-
公开(公告)号:CN110334781A
公开(公告)日:2019-10-15
申请号:CN201910497533.8
申请日:2019-06-10
Applicant: 大连理工大学
Abstract: 一种基于Res-Gan的零样本学习算法,属于机器学习中的零样本学习领域。包括:1):通过对属性空间的数据乘以权值,得到加权后的属性,实现属性的放大或抑制。2)在步骤1神经网络实现属性加权的基础上进行多激活函数融。3)在步骤2的基础上,设计残差结构,利用残差结构增加神经网络的深度,增加神经网络识别的准确率。4)在步骤3的基础上,设计生成对抗网络,生成对抗网络包含生成网络和判别网络,生成网络与残差结构相结合,通过两个网络之间的对抗,提高神经网络识别的准确率。本发明通过属性加权、多激活函数融合、残差结构、生成对抗网络等技术,使得神经网络训练的收敛速度大大提高,同时在AwA、CUB等数据集上的识别准确率也大幅提高。
-
公开(公告)号:CN107944476B
公开(公告)日:2019-06-21
申请号:CN201711102908.3
申请日:2017-11-10
Applicant: 大连理工大学
Abstract: 本发明属于计算机应用及人工智能技术领域,涉及一种基于深度强化学习的黄桃挖核机器人行为控制策略。针对传统的机械控制方法难以有效的对黄桃挖核机器人进行行为控制问题,本发明提出了一种基于深度强化学习的方法对具有视觉功能的黄桃挖核机器人进行行为控制,以期提高其工作性能。本专利发挥了深度学习的感知能力和强化学习的决策能力,使机器人能够利用深度学习识别桃核状态,进而,通过强化学习的方法指导单片机控制电机挖除桃核,以最终完成挖核任务。本发明对于利用机器代替人工劳力的挖核任务具有优势。
-
公开(公告)号:CN107944476A
公开(公告)日:2018-04-20
申请号:CN201711102908.3
申请日:2017-11-10
Applicant: 大连理工大学
CPC classification number: G06K9/6256 , B25J9/1679 , G06F17/5009 , G06K9/6267 , G06N3/0454
Abstract: 本发明属于计算机应用及人工智能技术领域,涉及一种基于深度强化学习的黄桃挖核机器人行为控制策略。针对传统的机械控制方法难以有效的对黄桃挖核机器人进行行为控制问题,本发明提出了一种基于深度强化学习的方法对具有视觉功能的黄桃挖核机器人进行行为控制,以期提高其工作性能。本发明发挥了深度学习的感知能力和强化学习的决策能力,使机器人能够利用深度学习识别桃核状态,进而,通过强化学习的方法指导单片机控制电机挖除桃核,以最终完成挖核任务。本发明对于利用机器代替人工劳力的挖核任务具有优势。
-
-