-
公开(公告)号:CN118631504A
公开(公告)日:2024-09-10
申请号:CN202410664207.2
申请日:2024-05-27
Abstract: 本发明公开了一种DoS攻击下的无人艇事件触发量化一致性控制方法,建立了考虑外部环境干扰和由通信网络传输时滞引起的输入延迟的无人艇的状态空间模型,并将其转化,利用转化后的无输入延迟模型,建立了无人艇的输出反馈状态观测器,针对状态不能直接策略的情况,利用状态观测器重构无人艇状态。同时建立了均匀量化器,有效减少通信频率和对带宽的占用。基于无人艇状态空间模型的通信网络拓扑图,获取无人艇在DoS网络攻击持续时间内的攻击误差,构建事件触发条件,并建立了基于无人艇的事件触发量化的一致性充分条件的一致性协议,能够实现在多种复杂通信情况下,使多无人艇保持一致性。极大地提升了无人艇的控制性能,能够抵抗多通道受独立DoS攻击的情况,为无人艇的广泛应用提供了重要的技术支撑。
-
公开(公告)号:CN118631504B
公开(公告)日:2025-02-21
申请号:CN202410664207.2
申请日:2024-05-27
Abstract: 本发明公开了一种DoS攻击下的无人艇事件触发量化一致性控制方法,建立了考虑外部环境干扰和由通信网络传输时滞引起的输入延迟的无人艇的状态空间模型,并将其转化,利用转化后的无输入延迟模型,建立了无人艇的输出反馈状态观测器,针对状态不能直接策略的情况,利用状态观测器重构无人艇状态。同时建立了均匀量化器,有效减少通信频率和对带宽的占用。基于无人艇状态空间模型的通信网络拓扑图,获取无人艇在DoS网络攻击持续时间内的攻击误差,构建事件触发条件,并建立了基于无人艇的事件触发量化的一致性充分条件的一致性协议,能够实现在多种复杂通信情况下,使多无人艇保持一致性。极大地提升了无人艇的控制性能,能够抵抗多通道受独立DoS攻击的情况,为无人艇的广泛应用提供了重要的技术支撑。
-
公开(公告)号:CN119494454A
公开(公告)日:2025-02-21
申请号:CN202510080922.6
申请日:2025-01-17
Applicant: 哈尔滨工程大学三亚南海创新发展基地 , 哈尔滨工程大学
IPC: G06Q10/047 , G06Q10/0631 , G06F18/2321
Abstract: 本公开提供了一种多无人艇的任务分配和路径规划方法及系统,所述方法包括:获取目标区域的全域地图;确定目标区域所包括的任务点,基于所述全域地图,对所述任务点进行聚类,得到多个任务区,其中,所述任务区的数量与无人艇的数量相同;根据所述任务区的聚类中心的位置和所述无人艇的位置,将所述无人艇与所述任务区进行匹配,每艘无人艇对应一个任务区;针对每个任务区,对所述无人艇进行路径规划,使所述无人艇完成对所有任务点的资源补给。应用本方法,可以使对任务点的资源补给实现无人化,减少人力物力的消耗,每艘无人艇负责对应任务区的任务点的资源补给,每艘无人艇之间互不干扰,提高资源补给的效率。
-
公开(公告)号:CN115616920B
公开(公告)日:2024-03-29
申请号:CN202211462366.1
申请日:2022-11-17
Applicant: 哈尔滨工程大学三亚南海创新发展基地 , 哈尔滨工程大学
IPC: G05D1/43 , G05D109/30
Abstract: 本发明属于海洋溢油回收技术领域,具体涉及一种多无人艇系统中耦合干扰主动抑制方法。本发明将围油栏转化为一般悬列线方程求解无人艇对围油栏的拖曳力,将无人艇的运动分解为船艏方向的匀速运动、船侧方向的匀速运动和定航向的回转运动,结和考虑围油栏影响的无人艇动力模型分别对所述三种运动方向进行运动补偿从而抵消围油栏对无人艇的干扰力。通过对补偿后的所述三个运动方向期望进行叠加,效果等效于不考虑围油栏情况下的期望航向及航速,从而使得无人艇能够完成溢油回收任务。本发明采用前馈补偿,具有超调量小、响应快、抗干扰能力强的优点。
-
公开(公告)号:CN115489702B
公开(公告)日:2024-03-26
申请号:CN202211160768.6
申请日:2022-09-22
Applicant: 哈尔滨工程大学三亚南海创新发展基地 , 哈尔滨工程大学
Abstract: 本发明提供一种无人无缆潜水器跨冰层快速自主回收装置与方法,自航浮力系统的冰面履带由履带和减震悬挂组成,布置在自航浮力系统的上方。出水冰孔导航系统的双目摄像头布置在自航浮力系统前端,用于采集水下图像;岸基光源固定在出水冰孔下方,用于提供出水冰孔位置,自航浮力系统在冰层底面利用双目摄像头俯视光源从而定位出水冰孔,导航至出水冰孔下方。牵引线缆系统的缆线一端固定在自航浮力系统,另一端通过线缆的固定环固定在AUV主体的挂钩上。收放缆电机布置在自航浮力系统凹槽中,用于驱动线缆收放,调节自航浮力系统与AUV主体的距离,从而牵引AUV主体移动。本发明结构简单,可模块化搭载,能实现无人无缆潜水器在冰层下快速安全的自主回收。
-
公开(公告)号:CN115503870A
公开(公告)日:2022-12-23
申请号:CN202211330661.1
申请日:2022-10-28
Applicant: 三亚哈尔滨工程大学南海创新发展基地 , 哈尔滨工程大学
Abstract: 本发明属于海洋自然能航行器技术领域,具体涉及一种带有浮态实时监测与自动调节功能的波浪翼板。本发明可对波浪翼板浮态进行实时监测与调节,有效解决静水环境下翼板由于浮力重力力矩不平衡产生攻角进而导致的阻力增加和推进效率降低的问题,也可以在波浪环境下使翼板在初始位置保持特定攻角δ0以达到提高推进效果的目的。由于加工精度、工作时间过长或生物附着导致的水翼在静水中产生攻角的问题可以实时监测和调整,一方面降低了加工难度,另一方面节约了试验时间。任务执行过程中如需要进入海水密度变化较大的区域时仍然可以进行实时调节且无需返航,节约能源。
-
公开(公告)号:CN115489702A
公开(公告)日:2022-12-20
申请号:CN202211160768.6
申请日:2022-09-22
Applicant: 三亚哈尔滨工程大学南海创新发展基地 , 哈尔滨工程大学
Abstract: 本发明提供一种无人无缆潜水器跨冰层快速自主回收装置与方法,自航浮力系统的冰面履带由履带和减震悬挂组成,布置在自航浮力系统的上方。出水冰孔导航系统的双目摄像头布置在自航浮力系统前端,用于采集水下图像;岸基光源固定在出水冰孔下方,用于提供出水冰孔位置,自航浮力系统在冰层底面利用双目摄像头俯视光源从而定位出水冰孔,导航至出水冰孔下方。牵引线缆系统的缆线一端固定在自航浮力系统,另一端通过线缆的固定环固定在AUV主体的挂钩上。收放缆电机布置在自航浮力系统凹槽中,用于驱动线缆收放,调节自航浮力系统与AUV主体的距离,从而牵引AUV主体移动。本发明结构简单,可模块化搭载,能实现无人无缆潜水器在冰层下快速安全的自主回收。
-
公开(公告)号:CN118967744A
公开(公告)日:2024-11-15
申请号:CN202410966426.6
申请日:2024-07-18
Applicant: 哈尔滨工程大学三亚南海创新发展基地 , 哈尔滨工程大学
IPC: G06T7/246 , G06V10/80 , G06V10/82 , G06T7/73 , G06V10/762 , G06V10/764 , G06N3/0464
Abstract: 本发明提出一种对跨介质运动目标的跟踪方法及系统,该方法将目标在水面域的光学特征与红外特征、水下域的光学特征与声呐特征进行融合,并在检测器额外增加跨介质目标预测头,利用融合特征与原始特征图交互后特征,对跨介质目标进行准确检测;提取目标的跨介质多模态Re‑ID特征,并将其映射到高维空间统一聚合,实现对目标的高级语义信息统一与重识别。对目标在单一介质域航行时,利用跟踪器候选目标信息召回、历史轨迹预测、最大响应值信息等多源信息最优估计实现对跨介质目标的平滑稳定跟踪。本发明方法可以对跨介质运动的航行器或其他目标进行精确检测,重识别与跟踪,提高对跨介质运动目标跟踪的精确性与连续性。
-
公开(公告)号:CN118941790A
公开(公告)日:2024-11-12
申请号:CN202410965874.4
申请日:2024-07-18
Applicant: 哈尔滨工程大学三亚南海创新发展基地 , 哈尔滨工程大学
IPC: G06V10/26 , G06V10/82 , G06V10/80 , G06N3/045 , G06N3/0464
Abstract: 一种极地船舶航道偏振光语义分割方法,它涉及一种偏振光语义分割方法。本发明为了解决传统的遥感技术,如光学和雷达成像,虽然在一定程度上能够提供极地冰区船舶航道信息,但在实际应用中仍存在分辨率有限、噪声干扰和天气条件影响的问题。本发明通过拍摄极地冰区海面图像,并对海面的浮冰和可通行航道区域进行类别掩码标注,构建海面目标检测数据集,构建极地船舶航道偏振光语义分割数据集;构建偏振生成注意力网络模块;构建偏振光语义分割框架;利用构建的极地船舶航道偏振光语义分割数据集;将训练好的极地船舶航道偏振光语义分割网络进行部署,实现高精度的极地船舶航道分割。本发明属于深度学习技术领域。
-
公开(公告)号:CN118918068A
公开(公告)日:2024-11-08
申请号:CN202410951526.1
申请日:2024-07-16
Applicant: 哈尔滨工程大学三亚南海创新发展基地 , 哈尔滨工程大学
Abstract: 一种基于光学图像和单点激光的极地冰层厚度水下智能测量方法,它涉及一种极地冰层厚度水下智能测量方法。本发明为了解决现有的测量技术难以在极地环境中实现高精度、低成本和高效率的冰层厚度测量的问题。本发明的步骤包括:步骤1、构建水下极地冰层厚度测量数据集;步骤2、计算单点激光作用区域位置像素坐标;步骤3、构建极地冰层厚度预测网络模型;步骤4、完成极地冰层厚度预测网络模型训练;步骤5、极地冰层厚度预测网络模型量化部署;步骤6、测量极地冰层厚度。本发明属于深度学习技术领域。
-
-
-
-
-
-
-
-
-