-
公开(公告)号:CN112001954A
公开(公告)日:2020-11-27
申请号:CN202010845895.4
申请日:2020-08-20
Applicant: 大连海事大学
Abstract: 本发明公开了一种基于极曲线约束的水下PCA-SIFT图像匹配方法,属于计算机视觉领域,该方法包括以下步骤:利用高斯函数分别对双目相机在水下采集的图像Ⅰ和图像Ⅱ进行模糊处理及降采样处理,分别由图像Ⅰ的极值点组和图像Ⅱ的极值点组得到图像Ⅰ的关键点组Ⅰ和图像Ⅱ的关键点组Ⅰ;分别为图像Ⅰ的关键点组Ⅱ和图像Ⅱ的关键点组Ⅱ里的每一个关键点分配一个基准方向和建立一个描述符采用PCA-SIFT算法构建描述子对剔除边缘位置的图像Ⅰ和图像Ⅱ进行匹配,同时结合改进的极曲线约束方法得到极曲线对匹配过程中进行约束,剔除误匹配点,完成图像Ⅰ和图像Ⅱ的匹配,该方法利用算法本身的快速性以及水下成像的极曲线约束条件,提高水下双目立体匹配的精度与效率。
-
公开(公告)号:CN112936277B
公开(公告)日:2024-02-20
申请号:CN202110166714.X
申请日:2021-02-04
Applicant: 大连海事大学
Abstract: 本发明公开了一种水下机器人‑机械手系统固定时间轨迹跟踪方法,属于机器人控制领域,该方法包括以下步骤:设计固定时间扰动观测器,采用固定时间扰动观测器在固定时间内实现对水下机器人‑机械手系统的未建模动态与外界扰动的进行观测,得到未建模动态与外界扰动对水下机器人‑机械手系统的影响力矩;设计固定时间积分滑模控制器,固定时间积分滑模控制器根据影响力矩产生一个补偿力矩,抵消未建模动态与外部扰动对水下机器人‑机械手系统的影响,最终固定时间积分滑模控制器实现水下机器人‑机械手系统的运行轨迹的精确跟踪;该方法所设计的固定时间积分滑模控制器,可在固定时间内跟踪期望轨迹,实现了系统的固定时间稳定。
-
公开(公告)号:CN111831011A
公开(公告)日:2020-10-27
申请号:CN202010791161.2
申请日:2020-08-07
Applicant: 大连海事大学
Abstract: 本发明公开了一种基于有限时间扰动观测器的水下机器人平面轨迹跟踪控制的方法,包括以下步骤:设计轨迹跟踪误差系统;设计控制律。考虑水下机器人在水下所遇到的复杂干扰情况,本发明所设计的有限时间扰动观测器可以精确的观测外界的扰动,实现了在有限时间内将跟踪误差镇定到零。本发明设计的非奇异终端滑模选取幂次趋近律,不仅保证了系统能够有限时间收敛,也可以降低控制输入的抖振,实现控制输入连续,从而提高系统的鲁棒性。本发明针对水下机器人水平面轨迹跟踪控制,提出了一种基于有限时间扰动观测器的非奇异终端滑模控制方法,采用幂次趋近律,相较于他人的研究,保证了系统有限时间收敛,并且使控制输入连续光滑。
-
公开(公告)号:CN111610788A
公开(公告)日:2020-09-01
申请号:CN202010538510.X
申请日:2020-06-13
Applicant: 大连海事大学
Abstract: 本发明提供一种分级模糊-人工势场路径规划的方法,包括:S1、环境建模;S2、执行改进的精英遗传算法,规划无人船全局路径;S3、执行具有模糊决策的模糊-人工势场算法,规划无人船局部路径;S4、在所述无人船全局路径上插入虚拟返回点,将所述无人船全局路径和无人船局部路径进行融合。本发明结合精英保留、多样性增量、自适应变异概率和自适应遗传算法,生成最优稀疏路径点并平滑路径。为了完全适应不可预测的环境,开发了具有模糊决策的模糊-人工势场算法,避免无人船陷入奇异点。在全局路径上插入虚拟返回点,使全局路径和局部路径的完美融合。本发明方法有较高的安全性和灵活性,使无人船能够安全且快速地完成最优路径规划。
-
公开(公告)号:CN112947067B
公开(公告)日:2024-02-20
申请号:CN202110105894.0
申请日:2021-01-26
Applicant: 大连海事大学
IPC: G05B13/04
Abstract: 本发明公开了一种水下机器人三维轨迹精确跟踪控制方法,包括以下步骤:建立水下机器人数学模型;构建跟踪误差系统方程;设计非奇异终端滑模面;设计有限时间扰动观测器;设计控制器。本发明设计了有限时间扰动观测器可实现对外界时变扰动的准确估计,为了补偿扰动,本发明提出了一种基于有限时间观测器的非奇异终端滑模控制方法,不仅补偿了时变扰动对水下机器人的影响,并且所设计的控制器也在有限时间内使跟踪误差镇定至零。同时采用幂次趋近律,有效降低了该控制方法所产生的抖振。本发明提出了基于有限时间扰动观测器的非奇异终端滑模控制策略,解决了复杂多维度时变扰动下的水下机器人精确跟踪问题。
-
公开(公告)号:CN111399506B
公开(公告)日:2023-04-25
申请号:CN202010177283.2
申请日:2020-03-13
Applicant: 大连海事大学
IPC: G05D1/02
Abstract: 本发明提供一种基于动力学约束的全局‑局部混合无人船路径规划方法。包括:S1、构建无人船运动学模型,并进行动力学分析;S2、考虑无人船安全范围,采用存储节点的方式,实现无人船全局路径的规划;以优化生成的路径点,约束无人船安全行驶。S3、针对动态的不可预见的环境,构建基于FDM模糊决策模块和FDW精准动态窗口模块的分层结构,实现无人船局部路径的规划;精确地将可驱动的前向、航向角速度和加速度考虑到局部路径的规划中,产生可跟踪且能够实现实时局部避碰的路径。S4、融合上述无人船全局路径规划和无人船局部路径规划方案,形成全局局部混合避障策略。通过在全局最优路径上插入虚拟路径点,使全局和局部路径规划完好结合,完成整个路径跟踪任务。
-
公开(公告)号:CN111831011B
公开(公告)日:2023-12-12
申请号:CN202010791161.2
申请日:2020-08-07
Applicant: 大连海事大学
Abstract: 本发明公开了一种基于有限时间扰动观测器的水下机器人平面轨迹跟踪控制的方法,包括以下步骤:设计轨迹跟踪误差系统;设计控制律。考虑水下机器人在水下所遇到的复杂干扰情况,本发明所设计的有限时间扰动观测器可以精确的观测外界的扰动,实现了在有限时间内将跟踪误差镇定到零。本发明设计的非奇异终端滑模选取幂次趋近律,不仅保证了系统能够有限时间收敛,也可以降低控制输入的抖振,实现控制输入连续,从而提高系统的鲁棒性。本发明针对水下机器人水平面轨迹跟踪控制,提出了一种基于有限时间扰动观测器的非奇异终端滑模控制方法,采用幂次趋近律,相较于他人的研究,保证了系统有限时间收敛,并且使控制输入连续光滑。
-
公开(公告)号:CN111553862B
公开(公告)日:2023-10-13
申请号:CN202010359252.9
申请日:2020-04-29
Applicant: 大连海事大学
Abstract: 本发明公开了一种海天背景图像去雾和双目立体视觉定位方法,属于计算机视觉领域,该方法在暗通道去雾模型的基础上,根据海天背景图像的上述特征,对双目摄像机拍摄到的图像中的天空区域与非天空区域进行分割,利用四分法确定大气光值预估值的最终区域,避免取单个值易受到外界随机条件的影响,将所选最终区域内所有像素的平均值作为优化模型的大气光值取值;再利用超像素分割得到景深和雾浓度相近的区域,构造衡量图像对比度和信息损失量的代价函数,计算每个区域的代价函数的最小值作为该区域的透射率估计值,然后采用引导滤波对其进行细化,得到优化模型的透射率取值。
-
公开(公告)号:CN112947067A
公开(公告)日:2021-06-11
申请号:CN202110105894.0
申请日:2021-01-26
Applicant: 大连海事大学
IPC: G05B13/04
Abstract: 本发明公开了一种水下机器人三维轨迹精确跟踪控制方法,包括以下步骤:建立水下机器人数学模型;构建跟踪误差系统方程;设计非奇异终端滑模面;设计有限时间扰动观测器;设计控制器。本发明设计了有限时间扰动观测器可实现对外界时变扰动的准确估计,为了补偿扰动,本发明提出了一种基于有限时间观测器的非奇异终端滑模控制方法,不仅补偿了时变扰动对水下机器人的影响,并且所设计的控制器也在有限时间内使跟踪误差镇定至零。同时采用幂次趋近律,有效降低了该控制方法所产生的抖振。本发明提出了基于有限时间扰动观测器的非奇异终端滑模控制策略,解决了复杂多维度时变扰动下的水下机器人精确跟踪问题。
-
公开(公告)号:CN112936277A
公开(公告)日:2021-06-11
申请号:CN202110166714.X
申请日:2021-02-04
Applicant: 大连海事大学
Abstract: 本发明公开了一种水下机器人‑机械手系统固定时间轨迹跟踪方法,属于机器人控制领域,该方法包括以下步骤:设计固定时间扰动观测器,采用固定时间扰动观测器在固定时间内实现对水下机器人‑机械手系统的未建模动态与外界扰动的进行观测,得到未建模动态与外界扰动对水下机器人‑机械手系统的影响力矩;设计固定时间积分滑模控制器,固定时间积分滑模控制器根据影响力矩产生一个补偿力矩,抵消未建模动态与外部扰动对水下机器人‑机械手系统的影响,最终固定时间积分滑模控制器实现水下机器人‑机械手系统的运行轨迹的精确跟踪;该方法所设计的固定时间积分滑模控制器,可在固定时间内跟踪期望轨迹,实现了系统的固定时间稳定。
-
-
-
-
-
-
-
-
-