-
公开(公告)号:CN110689504B
公开(公告)日:2022-09-30
申请号:CN201910961757.X
申请日:2019-10-11
Applicant: 大连海事大学
IPC: G06T5/00
Abstract: 本发明提供一种基于二次引导透射图的水下图像复原方法。本发明方法,包括:首先对红通道进行反转,在反转后的图像上使用暗通道先验,求取背景光;其次通过原始图像求取饱和度;根据背景光、饱和度和红色暗通道先验求取粗糙透射图,使用引导滤波将粗糙透射图分解为基础图像和细节图像,对基本图像进行拉普拉斯滤波处理,细节图像进行引导滤波处理,将处理后的图像重构得到细化透射图;然后结合水下成像模型进行图像复原;最后对复原图像进行自动色阶处理,得到最终复原图像。本发明专利提出了一种基于二次引导透射图的水下图像复原方法,该方法利用二次引导滤波和自动色阶,不仅有效增强图像细节,还解决颜色失真问题,提升视觉效果。
-
公开(公告)号:CN110889812A
公开(公告)日:2020-03-17
申请号:CN201910961740.4
申请日:2019-10-11
Applicant: 大连海事大学
Abstract: 本发明提供一种多尺度融合图像特征信息的水下图像增强方法。本发明方法,包含以下三个过程:首先,采用动态阈值白平衡解决颜色偏色;其次,增强图像对比度,使用同态滤波分离高频信息和低频信息,使用梯度场双区间直方图均衡化增强高频信息,采用Gamma校正处理低频信息,调整图像曝光度。最后,基于图像对比度、饱和度和最佳曝光度,采用多尺度融合策略对高频信息、双区间直方图输出图和Gamma校正后低频信息进行融合,得到增强图像。本发明专利提出了一种多尺度融合图像特征信息的水下图像增强方法,该方法通过多尺度融合策略,不仅增强图像细节和全局对比度,而且有效避免图像的过曝光和曝光不足,对图像暗区域的细节具有较好增强效果。
-
公开(公告)号:CN110889812B
公开(公告)日:2023-05-09
申请号:CN201910961740.4
申请日:2019-10-11
Applicant: 大连海事大学
Abstract: 本发明提供一种多尺度融合图像特征信息的水下图像增强方法。本发明方法,包含以下三个过程:首先,采用动态阈值白平衡解决颜色偏色;其次,增强图像对比度,使用同态滤波分离高频信息和低频信息,使用梯度场双区间直方图均衡化增强高频信息,采用Gamma校正处理低频信息,调整图像曝光度。最后,基于图像对比度、饱和度和最佳曝光度,采用多尺度融合策略对高频信息、双区间直方图输出图和Gamma校正后低频信息进行融合,得到增强图像。本发明专利提出了一种多尺度融合图像特征信息的水下图像增强方法,该方法通过多尺度融合策略,不仅增强图像细节和全局对比度,而且有效避免图像的过曝光和曝光不足,对图像暗区域的细节具有较好增强效果。
-
公开(公告)号:CN110689504A
公开(公告)日:2020-01-14
申请号:CN201910961757.X
申请日:2019-10-11
Applicant: 大连海事大学
IPC: G06T5/00
Abstract: 本发明提供一种基于二次引导透射图的水下图像复原方法。本发明方法,包括:首先对红通道进行反转,在反转后的图像上使用暗通道先验,求取背景光;其次通过原始图像求取饱和度;根据背景光、饱和度和红色暗通道先验求取粗糙透射图,使用引导滤波将粗糙透射图分解为基础图像和细节图像,对基本图像进行拉普拉斯滤波处理,细节图像进行引导滤波处理,将处理后的图像重构得到细化透射图;然后结合水下成像模型进行图像复原;最后对复原图像进行自动色阶处理,得到最终复原图像。本发明专利提出了一种基于二次引导透射图的水下图像复原方法,该方法利用二次引导滤波和自动色阶,不仅有效增强图像细节,还解决颜色失真问题,提升视觉效果。
-
公开(公告)号:CN110503617A
公开(公告)日:2019-11-26
申请号:CN201910807224.6
申请日:2019-08-29
Applicant: 大连海事大学
Abstract: 本发明提供一种基于高、低频信息融合的水下图像增强方法,属于图像处理领域,为解决水下图像的偏色、对比度低、可视性差等问题,本发明方法,包括:基于Retinex模型利用多尺度提取法估计出原图像高频部分照射分量,对获取的照射分量进行对比度受限的自适应直方图均衡化拉伸操作在增强全局对比度的同时突出主特征边缘细节;再将原图像与原图像高频部分照射分量相除来获取原图像低频部分照射分量,采用多尺度局部细节增强算法再对原图像高、低频部分对照射分量进行处理得到各自的细节图;再利用线性加权融合的方法对原图像高、低频部分对照射分量的细节图进行融合;最后对融合后的图像进行颜色校正来获取清晰的水下增强图像。
-
公开(公告)号:CN110334779A
公开(公告)日:2019-10-15
申请号:CN201910640006.8
申请日:2019-07-16
Applicant: 大连海事大学
Abstract: 本发明为一种基于PSPNet细节提取的多聚焦图像融合方法,其特征在于,包括以下步骤:首先,采用金字塔场景解析网络PSPNet聚合不同子区域的上下文信息,同时利用金字塔池化模块捕获多尺度下的全局和局部颜色、纹理、形状等特征信息,在此基础上将4种不同尺度的特征图融合为概率图;其次,采用卷积条件随机场ConvCRFs网络提取图像灰度特征,为了优化二值掩膜图,引入自适应阈值判断;为了获取两个源图像高精确聚焦区域,将优化的二值掩膜图作为权重图,并与两个源图像相乘,最后,将两个区域融合以重构清晰的融合图像。本发明通过图像上下文信息,提升全局特征利用率和分割精度,实现多聚焦图像全方位融合。
-
公开(公告)号:CN110503617B
公开(公告)日:2022-09-30
申请号:CN201910807224.6
申请日:2019-08-29
Applicant: 大连海事大学
Abstract: 本发明提供一种基于高、低频信息融合的水下图像增强方法,属于图像处理领域,为解决水下图像的偏色、对比度低、可视性差等问题,本发明方法,包括:基于Retinex模型利用多尺度提取法估计出原图像高频部分照射分量,对获取的照射分量进行对比度受限的自适应直方图均衡化拉伸操作在增强全局对比度的同时突出主特征边缘细节;再将原图像与原图像高频部分照射分量相除来获取原图像低频部分照射分量,采用多尺度局部细节增强算法再对原图像高、低频部分对照射分量进行处理得到各自的细节图;再利用线性加权融合的方法对原图像高、低频部分对照射分量的细节图进行融合;最后对融合后的图像进行颜色校正来获取清晰的水下增强图像。
-
公开(公告)号:CN110334779B
公开(公告)日:2022-09-30
申请号:CN201910640006.8
申请日:2019-07-16
Applicant: 大连海事大学
Abstract: 本发明为一种基于PSPNet细节提取的多聚焦图像融合方法,其特征在于,包括以下步骤:首先,采用金字塔场景解析网络PSPNet聚合不同子区域的上下文信息,同时利用金字塔池化模块捕获多尺度下的全局和局部颜色、纹理、形状等特征信息,在此基础上将4种不同尺度的特征图融合为概率图;其次,采用卷积条件随机场ConvCRFs网络提取图像灰度特征,为了优化二值掩膜图,引入自适应阈值判断;为了获取两个源图像高精确聚焦区域,将优化的二值掩膜图作为权重图,并与两个源图像相乘,最后,将两个区域融合以重构清晰的融合图像。本发明通过图像上下文信息,提升全局特征利用率和分割精度,实现多聚焦图像全方位融合。
-
-
-
-
-
-
-