-
公开(公告)号:CN116051545A
公开(公告)日:2023-05-02
申请号:CN202310208710.2
申请日:2023-03-07
Applicant: 复旦大学
IPC: G06T7/00 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0495 , G06N3/047 , G06N3/048 , G06N3/08 , G06N3/084
Abstract: 本发明涉及生物医学技术领域,进一步涉及影像处理、医学影像处理,具体涉及一种双模态影像的脑龄预测方法,主要提供一种双模态特征融合方法,所述双模态为MRI与PET两种医学影像;所述特征融合是基于3D卷积神经网络方法获得,包括如下步骤:S01使用两个3D卷积神经网络作为骨干网络来提取PET和MRI影像的特征;S02将两条骨干网络提取出的MRI与PET影像的特征在通道维度拼接,然后输入到压缩激励模块(Squeeze‑and‑ExcitationNetworks);S03将激励部分的输出结果和原始的特征图相乘,得到融合通道注意力信息的特征,获得双模态特征的融合特征图。本发明基于融合MRI与PET双模态脑影像进行脑龄预测,有效保留了影像的空间信息,相较于传统的单模态影像脑龄预测方法,更为全面反映了大脑衰老过程中的变化,从而显著提升了脑龄预测精度。
-
公开(公告)号:CN117036793A
公开(公告)日:2023-11-10
申请号:CN202310946251.8
申请日:2023-07-31
Applicant: 复旦大学
IPC: G06V10/764 , G06V10/82 , G06N3/042 , G06N3/0895 , G06V10/80
Abstract: 本发明公开了一种基于PET影像多尺度特征的脑龄评估方法,包括以下步骤:获取多个年龄段健康个体的大脑PET影像数据;将大脑PET影像划分成多个脑区并进行图像处理,以获得对应的各脑区代谢特征;构建健康个体的多尺度个体代谢功能邻接矩阵;将所述大脑PET影像和对应的脑龄标签,各脑区代谢特征以及个体代谢功能网络组成数据集;构建基于图神经网络的识别模型;采用数据集对识别模型进行自监督训练,以获得脑龄预测模型;将待预测的大脑PET影像输入至脑龄预测模型中,以获得对应的脑龄预测结果。本发明还提供了一种脑龄评估装置。本发明提供的方法有效地减少了模型预测的偏倚,从而获取更加准确的脑龄预测结果。
-
公开(公告)号:CN117036793B
公开(公告)日:2024-04-19
申请号:CN202310946251.8
申请日:2023-07-31
Applicant: 复旦大学
IPC: G06V10/764 , G06V10/82 , G06N3/042 , G06N3/0895 , G06V10/80
Abstract: 本发明公开了一种基于PET影像多尺度特征的脑龄评估方法,包括以下步骤:获取多个年龄段健康个体的大脑PET影像数据;将大脑PET影像划分成多个脑区并进行图像处理,以获得对应的各脑区代谢特征;构建健康个体的多尺度个体代谢功能邻接矩阵;将所述大脑PET影像和对应的脑龄标签,各脑区代谢特征以及多尺度个体代谢功能邻接矩阵组成数据集;构建基于图神经网络的识别模型;采用数据集对识别模型进行自监督训练,以获得脑龄预测模型;将待预测的大脑PET影像输入至脑龄预测模型中,以获得对应的脑龄预测结果。本发明还提供了一种脑龄评估装置。本发明提供的方法有效地减少了模型预测的偏倚,从而获取更加准确的脑龄预测结果。
-
公开(公告)号:CN116051545B
公开(公告)日:2024-02-06
申请号:CN202310208710.2
申请日:2023-03-07
Applicant: 复旦大学
IPC: G06T7/00 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0495 , G06N3/047 , G06N3/048 , G06N3/08 , G06N3/084
Abstract: 本发明涉及生物医学技术领域,进一步涉及影像处理、医学影像处理,具体涉及一种双模态影像的脑龄预测方法,主要提供一种双模态特征融合方法,所述双模态为MRI与PET两种医学影像;所述特征融合是基于3D卷积神经网络方法获得,包括如下步骤:S01使用两个3D卷积神经网络作为骨干网络来提取PET和MRI影像的特征;S02将两条骨干网络提取出的MRI与PET影像的特征在通道维度拼接,然后输入到压缩激励模块(Squeeze‑and‑ExcitationNetworks);S03将激励部分的输出结果和原始的特征图相乘,得到融合通道注意力信息的特征,获得双模态特征的融合特征图。本发明基于融合MRI与PET双模态脑影像进行脑龄预测,有效保留了影像的空间信息,相较于传统的单模态影像脑龄预测方法,更为全面反映了大脑衰老过程中的变化,从而显著提升了脑龄预测精度。
-
-
-