基于毫米波雷达的人体步态识别系统

    公开(公告)号:CN111738060A

    公开(公告)日:2020-10-02

    申请号:CN202010378975.3

    申请日:2020-05-07

    Applicant: 复旦大学

    Abstract: 本发明属于安防监控技术领域,具体为一种基于毫米波雷达的人体步态识别系统。本发明系统包括:毫米波雷达子系统、数据处理子系统、特征数据库子系统、分类识别子系统和交互界面子系统;毫米波雷达子系统用于发射和接收毫米波,得到包含人体步态信息的数字中频原始数据;数据处理子系统用于对原始数据进行数字信号处理提取雷达特征;特征数据库子系统用于存储和更新所设定步态的特征数据集;分类识别子系统用于利用传统分类方法和深度学习方法进行步态分类识别;交互界面子系统用于交互控制和显示步态识别结果。本发明着眼于室内和室外人体的步态特性分析,适用于智能家居和智能安防场景中的人体行走状态分析、行走特性识别、身份识别等。

    基于毫米波雷达和卷积神经网络的微动手势识别方法

    公开(公告)号:CN110765974B

    公开(公告)日:2023-05-02

    申请号:CN201911054117.7

    申请日:2019-10-31

    Applicant: 复旦大学

    Abstract: 本发明属于人机交互技术领域,具体为基于毫米波雷达和卷积神经网络的微动手势识别方法。本发明的主要步骤包括:根据应用场景设计雷达参数和微动手势;利用毫米波雷达周期性地发射具有确定雷达参数的线性调频信号同时接收人体手部反射的回波信号,与发射信号进行差频后进行ADC采样得到数字中频信号;对数字中频信号进行处理,计算微动手势的特征参数;选取某一特征,建立多种手势的数据集;针对毫米波雷达特征图像设计卷积神经网络,输入手势数据集训练得到分类模型;调用分类模型实现多种手势的分类识别。本发明实用性强,可用于智能家居、隔空输入、手语翻译、机械控制、VR、AR等领域,应用前景广阔。

    基于毫米波雷达的人体姿态识别系统

    公开(公告)号:CN110988861B

    公开(公告)日:2022-09-16

    申请号:CN201911056144.8

    申请日:2019-10-31

    Applicant: 复旦大学

    Abstract: 本发明属于模式识别技术领域,具体为一种基于毫米波雷达的人体姿态识别系统。本发明系统包括毫米波雷达子系统、数据处理与跟踪定位子系统、人工智能分类子系统;毫米波雷达子系统向检测范围内发射线性调频连续波信号,并采集人体反射的雷达回波数据,经混频、滤波和模数转换采样后输出中频原始数据;数据处理与跟踪定位子系统从原始数据中提取能够表征人体姿态的多种特征,包括距离、速度、加速度、方位特征等,实时跟踪定位人体所在位置;人工智能分类子系统对特征信息进行过滤、分类和判决,综合分类和判决结果确定人体姿态。本发明着眼于现实生活中的人体姿态识别和状态监测,可以适用于家庭、办公室、工厂车间、医院病房、养老院等场景。

    基于毫米波雷达的人体姿态识别系统

    公开(公告)号:CN110988861A

    公开(公告)日:2020-04-10

    申请号:CN201911056144.8

    申请日:2019-10-31

    Applicant: 复旦大学

    Abstract: 本发明属于模式识别技术领域,具体为一种基于毫米波雷达的人体姿态识别系统。本发明系统包括毫米波雷达子系统、数据处理与跟踪定位子系统、人工智能分类子系统;毫米波雷达子系统向检测范围内发射线性调频连续波信号,并采集人体反射的雷达回波数据,经混频、滤波和模数转换采样后输出中频原始数据;数据处理与跟踪定位子系统从原始数据中提取能够表征人体姿态的多种特征,包括距离、速度、加速度、方位特征等,实时跟踪定位人体所在位置;人工智能分类子系统对特征信息进行过滤、分类和判决,综合分类和判决结果确定人体姿态。本发明着眼于现实生活中的人体姿态识别和状态监测,可以适用于家庭、办公室、工厂车间、医院病房、养老院等场景。

    基于毫米波雷达和卷积神经网络的微动手势识别方法

    公开(公告)号:CN110765974A

    公开(公告)日:2020-02-07

    申请号:CN201911054117.7

    申请日:2019-10-31

    Applicant: 复旦大学

    Abstract: 本发明属于人机交互技术领域,具体为基于毫米波雷达和卷积神经网络的微动手势识别方法。本发明的主要步骤包括:根据应用场景设计雷达参数和微动手势;利用毫米波雷达周期性地发射具有确定雷达参数的线性调频信号同时接收人体手部反射的回波信号,与发射信号进行差频后进行ADC采样得到数字中频信号;对数字中频信号进行处理,计算微动手势的特征参数;选取某一特征,建立多种手势的数据集;针对毫米波雷达特征图像设计卷积神经网络,输入手势数据集训练得到分类模型;调用分类模型实现多种手势的分类识别。本发明实用性强,可用于智能家居、隔空输入、手语翻译、机械控制、VR、AR等领域,应用前景广阔。

    基于毫米波雷达的智能家居控制系统和方法

    公开(公告)号:CN110687816A

    公开(公告)日:2020-01-14

    申请号:CN201911052118.8

    申请日:2019-10-31

    Applicant: 复旦大学

    Abstract: 本发明属于智能识别与控制技术领域,具体为一种基于毫米波雷达的智能家居控制系统和方法。本发明系统包括毫米波雷达系统、信号处理系统、人工智能分类系统、中央控制系统;毫米波雷达系统向雷达照射场景发射线性调频连续波信号,并接收场景反射的回波信号,经处理得到中频原始数据;信号处理系统对原始数据进行处理得到特征数据,并将特征数据传输至人工智能分类系统;人工智能分类系统对毫米波雷达特征数据进行离线训练和在线分类,并传输至中央控制系统;中央控制系统对系统实时控制、监测与通信。本发明利用毫米波雷达实现智能家居领域的非接触式远程控制,提高日常生活的便捷性、舒适性和智能性,适用于普通家庭、办公室、会议室等场所。

Patent Agency Ranking