-
公开(公告)号:CN118733214A
公开(公告)日:2024-10-01
申请号:CN202410643867.2
申请日:2024-05-23
Applicant: 国网江苏省电力有限公司 , 国家电网有限公司 , 国网江苏省电力有限公司信息通信分公司 , 国网电力科学研究院有限公司
IPC: G06F9/48 , G06F9/50 , G06F18/214 , G06F18/21
Abstract: 本发明公开了一种基于历史学习的算力网络协同优化任务处理方法及系统,实时判断是否获取新任务,若未获取新任务,则获取长期训练任务的历史数据;对获取的历史数据进行训练,并预测下一时间段的接收任务及对应的任务处理步骤;若获取新任务,并且存在针对该时间段的预测的接收任务,若新任务与预测的接收任务相符,则执行预测的任务处理步骤;若新任务与预测的接收任务不符,则识别新任务,并执行新任务的任务处理步骤。在没有最新数据时,通过历史学习和数据提前处理和训练,有效地利用当前空闲的算力,避免在等待新数据时的资源浪费。通过预测并提前进行处理,让客户端能够在接收到新任务后快速响应,提高了效率和资源利用率。
-
公开(公告)号:CN117478379A
公开(公告)日:2024-01-30
申请号:CN202311425676.0
申请日:2023-10-30
Applicant: 国网电力科学研究院有限公司 , 国网江苏省电力有限公司信息通信分公司
IPC: H04L9/40 , H04L67/10 , G06F21/56 , G06F18/214
Abstract: 云边协同攻击识别方法,边缘端基于GNN算法训练攻击识别模型并将自身训练集数据传输给云端;云端基于训练集数据更新自身数据集并利用数据集训练攻击识别模型;云端对攻击识别模型进行筛选,将筛选后的模型分发给边缘端;在整个过程中,边缘端收集恶意攻击流量记录以更新自身训练集。本发明利用GNN和开源数据集训练攻击识别模型,训练分布在具有一定的资源训练能力和信息收集能力的边缘计算端,识别精度高的边缘端将训练集传输到云端以更新云端的训练集,云端将识别精确率高的模型下发给云端,最终通过云边之间的数据和模型传输实现云边协同的攻击识别;降低了云端的资源压力,同时增加了云端的安全识别能力以及云端与边缘之间的安全协调性。
-