基于LSTM神经网络和改进SCADA数据的抗差线路参数辨识方法

    公开(公告)号:CN113537338A

    公开(公告)日:2021-10-22

    申请号:CN202110793737.3

    申请日:2021-07-13

    Abstract: 本发明公开了一种基于LSTM神经网络和改进SCADA数据的抗差线路参数辨识方法,该方法包括建立包含不同运行条件下不同线路SCADA数据训练集;改进SCADA数据,建立LSTM神经网络,输入改进SCADA数据训练LSTM神经网络;将改进后的待辨识线路两端量测SCADA数据作为输入数据输入训练好的LSTM神经网络获取预测值;基于中位数抗差估计,去除预测值中的异常数据及噪声,作为最终辨识结果。将LSTM神经网络与改进SCADA数据相结合,旨在利用神经网络进行线路参数辨识,提高线路辨识方法的鲁棒性;改进的SCADA输入数据构建方法能提高LSTM神经网络的模型学习效果和辨识精度。应用中位数抗差,去除预测值中的异常数据及噪声,提高预测结果的精准度。

Patent Agency Ranking