基于联邦泛化数据处理方法、系统、计算设备及存储介质

    公开(公告)号:CN116628497A

    公开(公告)日:2023-08-22

    申请号:CN202310583452.6

    申请日:2023-05-23

    Abstract: 本发明公开了一种基于联邦泛化数据处理方法、系统、计算设备及存储介质,所述方法包括:基于联邦对比学习进行数据建模,将数据样本标记为异常样本和正常样本的不同类别,每个本地模型在其本地数据集上进行联邦检测任务的迭代训练,并逐步更新其自己的参数;本地更新后,在可信的中央服务器聚合所有参与联邦检测任务的本地模型的参数,经过计算后聚合形成一个全局模型,然后服务器将所述全局模型分发给参与的终端,进行下次迭代训练。本发明实现在“数据孤岛”状态下对于样本的充分学习和利用,基于对比学习技术,拉近正常样本之间的距离,拉远异常样本距离,从而实现在保护隐私的前提下,对数据的建模,并为异常检测打下基础。

    一种基于空时残差神经网络的远场语音识别方法

    公开(公告)号:CN110895933A

    公开(公告)日:2020-03-20

    申请号:CN201811030952.2

    申请日:2018-09-05

    Abstract: 本发明公开了一种基于空时残差神经网络的远场语音识别方法,所述方法包括:步骤1)构建并训练空时残差神经网络ST-RES-LSTM,该神经网络是在的空间和时间两个维度上都引入了残差结构的LSTM神经网络;步骤2)利用训练好的空时残差神经网络ST-RES-LSTM进行声学模型训练,并生成每一帧的分类概率;步骤3)构建语音识别解码网络,并使用步骤2)的训练好的声学模型进行维特比解码出最终识别结果。本发明的方法在LSTM网络的空间和时间两个维度都引入残差结构,既能缓解层数加深带来的梯度消失问题,又能缓解LSTM在时间维度存在的梯度消失问题,从而提高语音识别的性能。

    软件定义网络的网络安全性测试方法

    公开(公告)号:CN105187403A

    公开(公告)日:2015-12-23

    申请号:CN201510498610.3

    申请日:2015-08-13

    CPC classification number: H04L63/1408 H04L63/1433

    Abstract: 本发明提出一种面向软件定义网络的网络安全性测试方法,包括针对目标软件定义网络的安全性测试框架、安全性测试策略、分类安全性测试方法、项目安全性测试方法和安全性测试步骤。其中,测试框架包括将目标软件定义网络划分为数据、控制、应用和管理四个网络平面,分别对各个网络平面的各个网元、链路以及各个网络平面之间的接口展开安全性测试;测试策略包括对安全性测试框架中的各个单元进行测试的选择和流程编制方法;分类安全性测试方法依据各个单元的类别特点开展不同类型的安全性测试;项目安全性测试方法实现具体的针对目标网元、链路或接口的安全性测试,测试流程定义了完整的针对目标软件定义网络的安全性测试过程和步骤。

Patent Agency Ranking