-
公开(公告)号:CN118568487A
公开(公告)日:2024-08-30
申请号:CN202410548464.X
申请日:2024-05-06
Applicant: 国家计算机网络与信息安全管理中心 , 国家计算机网络与信息安全管理中心天津分中心 , 中国科学院自动化研究所
IPC: G06F18/214 , G06F18/25 , G06F18/2431 , G06N3/042
Abstract: 本申请实施例提供一种多模态轻量级动态知识增强方法、装置及存储介质,所述方法包括:基于图像小样本集的向量表征和文本小样本集的向量表征,以多模态视觉码书的形式构建图像小样本知识库和文本小样本知识库;基于单模态搜索的方式从所述图像小样本知识库或所述文本小样本知识库中确定待融合表征的跨模态表征,融合所述待融合表征和所述跨模态表征,得到知识增强后的融合表征。本申请实施例提供的多模态轻量级动态知识增强方法、装置及存储介质,在现有大规模预训练多模态模型的强大表征学习基础上,融合罕见且细粒度的跨模态表征信息,以此提高原始表征的质量,并显著提升对特定信息的检索效率。
-
公开(公告)号:CN109815789A
公开(公告)日:2019-05-28
申请号:CN201811514183.3
申请日:2018-12-11
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
Abstract: 本发明涉及人脸检测技术领域,具体涉及一种在CPU上实时多尺度人脸检测方法与系统及相关设备,目的在于降低人脸检测的硬件成本,提高人脸检测的速度与准确度。本发明的人脸检测系统包括:特征提取模块、多尺度检测模块和非极大值抑制模块。其中,特征提取模块配置为:从待检测图像中提取关键特征,得到多尺度的待检测特征图;多尺度检测模块配置为:根据多尺度的待检测特征图预测人脸得分和相应的位置;非极大值抑制模块配置为:根据人脸得分进行非极大值抑制,从而得到检测结果。本发明降低了人脸检测的硬件成本,提高了多尺度人脸检测的速度与准确度,能在CPU上实现准确率较高的多尺度人脸检测功能,继而可以应用在手机等平台上。
-
公开(公告)号:CN109190750A
公开(公告)日:2019-01-11
申请号:CN201810737975.0
申请日:2018-07-06
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
Abstract: 本发明涉及深度学习技术领域,具体提供了一种基于对抗生成网络的小样本生成方法及装置,旨在解决如何在少量样本数据的情况下利用生成对抗网络生成样本数据的技术问题。为此目的,本发明提供的基于对抗生成网络的小样本生成方法能够基于对抗生成网络并根据随机噪声和标签信息,生成小样本类型对应的样本。在此过程中,本发明采用迁移学习和批量训练的方法对对抗生成网络进行网络训练,使生成对抗网络可以有效迁移应用于少量样本的对抗生成网络样本生成任务中。
-
公开(公告)号:CN118014049A
公开(公告)日:2024-05-10
申请号:CN202410177798.0
申请日:2024-02-08
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
IPC: G06N3/09 , G06N3/0455 , G06F18/22 , G06F18/2431 , G06F40/30 , G06V20/70 , G06V10/40 , G06V10/82
Abstract: 本发明提供一种图文互生模型的训练方法,该方法包括:基于模态自感单元从样本模态数据中提取自感信息;模态自感单元基于自注意力网络通过多任务有监督训练得到;基于图文编码器对自感信息进行编码,得到隐空间特征,并对隐空间特征进行多模态扩散处理,得到扩散后的目标模态类型的隐空间特征;基于图文解码器对自感信息和扩散后的目标模态类型的隐空间特征进行解码,得到解码信息;根据解码信息和多任务损失函数对图文编码器和图文解码器进行训练,得到图文互生模型;目标损失包括重建损失、图像类的理解辅助任务对应损失和文本类的理解辅助任务对应损失确定。本发明所述方法提高了图文互生对应模型的性能和可适配性。
-
公开(公告)号:CN109190750B
公开(公告)日:2021-06-08
申请号:CN201810737975.0
申请日:2018-07-06
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
Abstract: 本发明涉及深度学习技术领域,具体提供了一种基于对抗生成网络的小样本生成方法及装置,旨在解决如何在少量样本数据的情况下利用生成对抗网络生成样本数据的技术问题。为此目的,本发明提供的基于对抗生成网络的小样本生成方法能够基于对抗生成网络并根据随机噪声和标签信息,生成小样本类型对应的样本。在此过程中,本发明采用迁移学习和批量训练的方法对对抗生成网络进行网络训练,使生成对抗网络可以有效迁移应用于少量样本的对抗生成网络样本生成任务中。
-
公开(公告)号:CN117574412B
公开(公告)日:2024-04-02
申请号:CN202410060420.2
申请日:2024-01-16
Applicant: 国家计算机网络与信息安全管理中心天津分中心 , 国家计算机网络与信息安全管理中心
Inventor: 贾云刚 , 王建礼 , 刘铭 , 许光全 , 李鹏霄 , 崔婧怡 , 刘健 , 段东圣 , 井雅琪 , 赵曦滨 , 赵志云 , 赵淳璐 , 贺欣 , 马宏远 , 张震 , 高一骄 , 武南南 , 孙捷 , 孙海亮 , 刘秀龙
Abstract: 本申请实施例提供一种多方隐私求交方法、装置和电子设备,涉及数据处理技术领域,应用于目标参与方,多个参与方包括目标参与方和其他参与方,该方法包括:依次接收其他参与方发送的多个隐私信息,各隐私信息包括其他参与方的签名信息和第一哈希表数据片段;基于多个隐私信息中的签名信息,对其他参与方的身份进行验证;在其他参与方的身份验证通过的情况下,基于多个第一哈希表数据片段和目标参与方的哈希表数据,确定其他参与方和目标参与方之间的隐私求交结果。这样在计算多个参与方的隐私求交结果时,可以有效地实现隐私求交结果的计算效率和参与方之间的通信效率的平衡。
-
公开(公告)号:CN116127964A
公开(公告)日:2023-05-16
申请号:CN202211600947.7
申请日:2022-12-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京中科闻歌科技股份有限公司 , 国家计算机网络与信息安全管理中心天津分中心
IPC: G06F40/284 , G06F40/30 , G06F16/35 , H04L9/40 , H04W12/12
Abstract: 本发明公开了一种融合传播关系的诈骗信息的检测方法。该方法包括:获取第一信息组、诈骗账号库以及正常账号库,其中第一信息组中的每一个信息包括文本信息和发信账号;根据诈骗账号库和正常账号库从第一信息组中确定第二信息组,其中第二信息组中的每一个信息的发信账号在诈骗账号库和正常账号库中都不存在;根据第二信息组得到多个目标信息组,其中每一个目标信息组中的第一发信账号与第二发信账号的相似文本信息的数量大于第一阈值;计算每一个目标信息组的诈骗权重值;在目标信息组的诈骗权重值大于第二阈值的情况下,将目标信息组中的每一个文本信息确定为诈骗信息。本发明解决了对大量诈骗信息进行检测时,处理效率低的技术问题。
-
公开(公告)号:CN117632041A
公开(公告)日:2024-03-01
申请号:CN202410102237.4
申请日:2024-01-25
Applicant: 国家计算机网络与信息安全管理中心天津分中心 , 国家计算机网络与信息安全管理中心 , 南开大学
Inventor: 贾云刚 , 刘健 , 刘铭 , 许光全 , 闫莉莉 , 李鹏霄 , 光炫 , 贺欣 , 朱佳伟 , 李晓华 , 赵志云 , 井雅琪 , 吕东 , 马宏远 , 张震 , 段东圣 , 高一骄 , 刘秀龙 , 孙捷 , 孙海亮
IPC: G06F3/06 , G06F11/10 , H04L67/1097
Abstract: 本发明提供一种基于再生码的分布式存储方法、装置和电子设备,属于分布式存储技术领域。该方法包括:获取待存储的原始数据,确定原始数据对应的原始数据向量;确定分布式存储系统中各系统节点的编码矩阵以及分布式存储系统中各校验节点的编码矩阵;基于各系统节点的编码矩阵和原始数据向量分别确定各系统节点存储的第一再生码数据向量;基于各校验节点的编码矩阵和原始数据向量分别确定各校验节点存储的第二再生码数据向量。将第一再生码数据向量发送至对应的系统节点进行存储,将第二再生码数据向量发送至对应的校验节点进行存储。本方案通过以向量为单位进行存储,通信过程中是对每个单位向量整体进行编解码,节约了计算资源。
-
公开(公告)号:CN117574412A
公开(公告)日:2024-02-20
申请号:CN202410060420.2
申请日:2024-01-16
Applicant: 国家计算机网络与信息安全管理中心天津分中心 , 国家计算机网络与信息安全管理中心
Inventor: 贾云刚 , 王建礼 , 刘铭 , 许光全 , 李鹏霄 , 崔婧怡 , 刘健 , 段东圣 , 井雅琪 , 赵曦滨 , 赵志云 , 赵淳璐 , 贺欣 , 马宏远 , 张震 , 高一骄 , 武南南 , 孙捷 , 孙海亮 , 刘秀龙
Abstract: 本申请实施例提供一种多方隐私求交方法、装置和电子设备,涉及数据处理技术领域,应用于目标参与方,多个参与方包括目标参与方和其他参与方,该方法包括:依次接收其他参与方发送的多个隐私信息,各隐私信息包括其他参与方的签名信息和第一哈希表数据片段;基于多个隐私信息中的签名信息,对其他参与方的身份进行验证;在其他参与方的身份验证通过的情况下,基于多个第一哈希表数据片段和目标参与方的哈希表数据,确定其他参与方和目标参与方之间的隐私求交结果。这样在计算多个参与方的隐私求交结果时,可以有效地实现隐私求交结果的计算效率和参与方之间的通信效率的平衡。
-
公开(公告)号:CN118585608A
公开(公告)日:2024-09-03
申请号:CN202410750428.1
申请日:2024-06-12
Applicant: 国家计算机网络与信息安全管理中心 , 烟台中科网络技术研究所
IPC: G06F16/33 , G06F16/35 , G06F18/2415 , G06F40/30 , G06F9/50
Abstract: 本发明涉及人工智能进行自然语言处理技术领域,尤其涉及一种短文本智能分析与分类优化方法,包括以下步骤:S1:对短文本信息进行初步处理,得到初步处理后的短文本信息;S2:引入均衡负载数据分片算法将初步处理后的短文本信息进行数据分片并存储至多个节点k,利用分布式分散处理算法实现数据并行处理;S3:引入语境深度理解算法,优化短文本信息分类的准确率;S4:各节点k利用优化自然语言处理算法对分得的短文本分片数据进行智能分析,并确定其所属类别;S5:汇总并分析全部节点k上的分类结果,得到短文本信息的最终分析与分类结果,本方法提高了短文本信息处理分析与分类中的效率及准确率。
-
-
-
-
-
-
-
-
-