-
公开(公告)号:CN112347272B
公开(公告)日:2023-03-10
申请号:CN202010987148.4
申请日:2020-09-18
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/41 , G06F16/432 , G06F16/483
Abstract: 本发明涉及一种基于音视频动态特征的流式匹配方法和装置。该方法通过区间索引树和两级哈希表,实现了快速判断每个任意偏移位置的数据是否有匹配的指纹,并输出匹配的状态,解决了音视频匹配速度慢、数据包随机到来并且长度不确定的问题,实现了实时匹配,提高了检测速度;该方法通过建立区间索引树的方式,实现了指纹特征的动态管理,用户可以根据需要动态增删指纹特征,解决了现有的技术方案中指纹特征固定不变,无法随用户需求发生变化的问题。本发明能够快速的检测音视频数据是否与指纹匹配,极大地提高了指纹匹配效率,能够适应高速大流量网络数据的环境,可以根据用户的需要改变指纹特征,满足了指纹特征可能发生变化的需求。
-
公开(公告)号:CN112350986A
公开(公告)日:2021-02-09
申请号:CN202010987152.0
申请日:2020-09-18
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: H04L29/06 , H04L29/08 , H04L12/851
Abstract: 本发明涉及一种音视频网络传输碎片化的整形方法及系统。该方法的步骤包括:在实时网络流量中,识别音视频碎片化传输的数据流和信息流;将识别的音视频碎片传输的信息流存储在高性能消息队列中;在高性能消息队列中获取音视频碎片传输的信息流,对信息流进行分析处理;利用识别的音视频碎片传输的数据流与分析处理后的信息流,进行音视频碎片数据的关联,实现碎片化传输的音视频的整形。本发明高度概括了音视频碎片化传输的描述模型,能够涵盖目前已知的音视频碎片化传输的所有表现形式,音视频网络传输碎片化的整形具有通用性、灵活性,能够应对不同音视频服务提供商碎片化传输方式的差异性和动态变化。
-
公开(公告)号:CN112347272A
公开(公告)日:2021-02-09
申请号:CN202010987148.4
申请日:2020-09-18
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/41 , G06F16/432 , G06F16/483
Abstract: 本发明涉及一种基于音视频动态特征的流式匹配方法和装置。该方法通过区间索引树和两级哈希表,实现了快速判断每个任意偏移位置的数据是否有匹配的指纹,并输出匹配的状态,解决了音视频匹配速度慢、数据包随机到来并且长度不确定的问题,实现了实时匹配,提高了检测速度;该方法通过建立区间索引树的方式,实现了指纹特征的动态管理,用户可以根据需要动态增删指纹特征,解决了现有的技术方案中指纹特征固定不变,无法随用户需求发生变化的问题。本发明能够快速的检测音视频数据是否与指纹匹配,极大地提高了指纹匹配效率,能够适应高速大流量网络数据的环境,可以根据用户的需要改变指纹特征,满足了指纹特征可能发生变化的需求。
-
公开(公告)号:CN112350986B
公开(公告)日:2023-06-23
申请号:CN202010987152.0
申请日:2020-09-18
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: H04L65/60 , H04L47/2483 , H04L67/02 , H04L69/18 , H04L67/06
Abstract: 本发明涉及一种音视频网络传输碎片化的整形方法及系统。该方法的步骤包括:在实时网络流量中,识别音视频碎片化传输的数据流和信息流;将识别的音视频碎片传输的信息流存储在高性能消息队列中;在高性能消息队列中获取音视频碎片传输的信息流,对信息流进行分析处理;利用识别的音视频碎片传输的数据流与分析处理后的信息流,进行音视频碎片数据的关联,实现碎片化传输的音视频的整形。本发明高度概括了音视频碎片化传输的描述模型,能够涵盖目前已知的音视频碎片化传输的所有表现形式,音视频网络传输碎片化的整形具有通用性、灵活性,能够应对不同音视频服务提供商碎片化传输方式的差异性和动态变化。
-
公开(公告)号:CN112560858A
公开(公告)日:2021-03-26
申请号:CN202011088800.5
申请日:2020-10-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京工业大学
Abstract: 本发明公开了一种联合轻量化网络和个性化特征提取的字符图片检测及快速匹配方法,首先基于轻量化网络的深度学习方法对字符类图片进行分类,检测出字符类图片和非字符类图片,对于字符类图片进一步划分出复杂背景和简单背景两类字符类图片;进而针对两类字符图片,分别提取个性化特征表征图片内容;最后根据提取的个性化特征使用对应方法进行快速匹配,在保证准确率的同时,提高匹配速度。本发明可以有效降低匹配时间,可以综合、高效地利用字符类图片的内容信息,达到兼具鲁棒性和实时性的字符类图片匹配需求。
-
公开(公告)号:CN114118127B
公开(公告)日:2024-05-21
申请号:CN202111205085.3
申请日:2021-10-15
Applicant: 北京工业大学 , 国家计算机网络与信息安全管理中心
IPC: G06V20/50 , G06V10/80 , G06V10/82 , G06V10/40 , G06V10/764 , G06N3/0464
Abstract: 本申请实施例涉及一种视觉场景标志的检测与识别方法及装置,该方法包括:通过视觉场景标志合成算法确定目标识别类别的视觉场景标志训练数据;基于多尺度特征融合网络模型,对视觉场景标志训练数据进行视觉场景标志的检测与识别;其中,多尺度特征融合网络模型基于以下步骤获得:构建多尺度特征融合网络模型;基于视觉场景标志合成数据对多尺度特征融合网络模型进行第一训练,得到第一训练后的多尺度特征融合网络模型;基于预先标注的视觉场景标志对第一训练后的多尺度特征融合网络模型进行第二训练,得到训练好的多尺度特征融合网络模型。本申请实施例能够提升视觉场景标志检测与识别的精准度和速度。
-
公开(公告)号:CN112560858B
公开(公告)日:2023-04-07
申请号:CN202011088800.5
申请日:2020-10-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京工业大学
IPC: G06V30/148 , G06V30/19 , G06V10/762
Abstract: 本发明公开了一种联合轻量化网络和个性化特征提取的字符图片检测及快速匹配方法,首先基于轻量化网络的深度学习方法对字符类图片进行分类,检测出字符类图片和非字符类图片,对于字符类图片进一步划分出复杂背景和简单背景两类字符类图片;进而针对两类字符图片,分别提取个性化特征表征图片内容;最后根据提取的个性化特征使用对应方法进行快速匹配,在保证准确率的同时,提高匹配速度。本发明可以有效降低匹配时间,可以综合、高效地利用字符类图片的内容信息,达到兼具鲁棒性和实时性的字符类图片匹配需求。
-
公开(公告)号:CN108052535A
公开(公告)日:2018-05-18
申请号:CN201711132235.6
申请日:2017-11-15
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
Abstract: 本发明涉及一种基于多处理器平台的视觉特征并行快速匹配方法和系统,包括:根据层次聚类算法对包含视觉特征的数据集进行层次聚类以获得聚类树,并根据聚类阈值确定该聚类树中各类别的聚类中心;根据该处理器个数和该聚类中心的个数,建立该聚类中心到各处理器的映射,以在各处理器的本地内存中建立哈希表;根据用户输入的查询数据与各聚类中心的距离,选择多个聚类中心所对应的哈希表作为待查表项;在每个待查表项上计算查询数据的哈希值,选择与查询数据哈希值相同的数据作为查询结果的候选点,通过计算该候选点与该查询数据之间的距离,对该候选点进行筛选得到查询结果。由此本发明可显著地提高查询效率,应对千万规模的数据检索。
-
公开(公告)号:CN107992368A
公开(公告)日:2018-05-04
申请号:CN201711132105.2
申请日:2017-11-15
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
Abstract: 本发明涉及一种多进程间的数据交换方法和系统,包括使用共享内存及域名套接字混合架构交换数据,并将共享内存划分为N个节点空间,进行数据共享,而使用域名套接字对共享内存中的数据进行同步。由于每个进程在访问节点空间之前都使用互斥锁访问标识位,避免了读内存和写内存之间的冲突。节点空间的标识位和互斥锁的搭配使用,使得数据生产进程和多个数据消费进程之间互斥,而多个数据消费进程之间可以同时访问同一片内存,使得数据消费进程不会造成因加锁而造成性能下降。
-
公开(公告)号:CN114118127A
公开(公告)日:2022-03-01
申请号:CN202111205085.3
申请日:2021-10-15
Applicant: 北京工业大学 , 国家计算机网络与信息安全管理中心
Abstract: 本申请实施例涉及一种视觉场景标志的检测与识别方法及装置,该方法包括:通过视觉场景标志合成算法确定目标识别类别的视觉场景标志训练数据;基于多尺度特征融合网络模型,对视觉场景标志训练数据进行视觉场景标志的检测与识别;其中,多尺度特征融合网络模型基于以下步骤获得:构建多尺度特征融合网络模型;基于视觉场景标志合成数据对多尺度特征融合网络模型进行第一训练,得到第一训练后的多尺度特征融合网络模型;基于预先标注的视觉场景标志对第一训练后的多尺度特征融合网络模型进行第二训练,得到训练好的多尺度特征融合网络模型。本申请实施例能够提升视觉场景标志检测与识别的精准度和速度。
-
-
-
-
-
-
-
-
-