-
公开(公告)号:CN106227768B
公开(公告)日:2019-09-03
申请号:CN201610559782.1
申请日:2016-07-15
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9536 , G06F17/27
Abstract: 本发明公开了一种基于互补语料的短文本观点挖掘方法,是基于属性的观点挖掘;具体为:首先,从某段微博语料中选取训练语料,进行分词处理,词性标注和筛选;根据观点词将训练语料进行属性词的标注;并使用词性标注做为特征训练最大熵模型;然后,针对某个事件的微博语料和新闻语料,构建跨语料的话题模型,并结合最大熵模型,分析该事件所属的话题并提取相应的属性词分布和观点词分布;最后,针对某个具体共享话题的所有观点词或者某个具体独享话题中的所有观点词,利用情感分类器进行极性分析。本发明适用于对舆情事件的属性分析及观点挖掘,具有高效性、鲁棒性和易用性的特点,在观点挖掘、舆情监控等领域具有重要的应用价值。
-
公开(公告)号:CN110096575B
公开(公告)日:2022-02-01
申请号:CN201910375599.X
申请日:2019-05-07
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/33 , G06F16/958 , G16H10/20 , G16H20/70
Abstract: 本发明公开了一种面向微博用户的心理画像方法,包括:步骤一、在微博平台上选取样本用户,根据设定的心理学量表,利用调查问卷法获取样本用户的人格特征得分;步骤二、根据所述样本用户在微博平台上的文本信息,获取样本用户的文本表征,根据所述样本用户的行为信息,获取样本用户的行为表征;步骤三、根据样本用户的人格特征得分与文本表征和行为表征的对应关系,构建人格特征预测模型;步骤四、获取待测用户的文本表征和行为表征,根据人格特征预测模型,获得待测用户的人格特征。本发明能够实现对微博用户的人格特质的分析,为微博用户的心理画像提供技术支持。
-
公开(公告)号:CN111581956A
公开(公告)日:2020-08-25
申请号:CN202010269087.8
申请日:2020-04-08
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Inventor: 赵忠华 , 吴俊杰 , 赵志云 , 葛自发 , 孙小宁 , 张冰 , 王欣欣 , 李欣 , 袁钟怡 , 孙立远 , 付培国 , 王禄恒 , 左源 , 李丰志 , 李英汉 , 户中方
IPC: G06F40/279 , G06F40/216 , G06F40/242 , G06F40/126 , G06F16/335 , G06F16/35 , G06K9/62
Abstract: 本发明公开了一种基于BERT模型和K近邻的敏感信息识别方法,包括:步骤一、对文本进行预处理;步骤二、标注多条预处理文本为敏感信息和非敏感信息,步骤三、表征得到敏感信息的向量表征和非敏感信息的向量表征;步骤四、以敏感信息的向量表征为正类数据、以非敏感信息的向量表征为负类数据,构建近似最邻近搜索图;步骤五、将待测文本的向量表征输入至近似最邻近搜索图,搜索得到近似最近邻的K个节点,判断节点属性及根据该条待测文本的敏感度权重,修正其敏感度值后,判断是否为敏感信息。本发明公开了一种基于BERT模型和K近邻的敏感信息识别系统。本发明具有提升文本质量,提升敏感信息识别的速度和精度的有益效果。
-
公开(公告)号:CN115293479A
公开(公告)日:2022-11-04
申请号:CN202210559536.1
申请日:2022-05-23
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明公开了一种舆情分析工作流系统,包括:数据分析功能模块,其包括N个能够进行舆情数据分析的数据分析模块;工作流建立模块,其根据舆情分析需求从数据分析功能模块中选择多个数据分析模块,按顺序进行连接,建立对特定任务进行分析的工作流,针对同一事件不同分析角度的舆情分析需求,建立多个工作流,以对多个舆情分析任务进行分析;工作流管理模块,其对建立的工作流进行数据分析计算,并通过可视化工作流图查看计算结果;事件管理模块,其对同一事件的多个舆情分析任务进行管理,并通过舆情分析数据构建不同任务之间的联系。本发明还提供了舆情分析工作流方法。本系统和方法能够根据舆情分析需求实现从不同层次和不同角度获得舆情信息。
-
公开(公告)号:CN111581956B
公开(公告)日:2022-09-13
申请号:CN202010269087.8
申请日:2020-04-08
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Inventor: 赵忠华 , 吴俊杰 , 赵志云 , 葛自发 , 孙小宁 , 张冰 , 王欣欣 , 李欣 , 袁钟怡 , 孙立远 , 付培国 , 王禄恒 , 左源 , 李丰志 , 李英汉 , 户中方
IPC: G06F40/279 , G06F40/216 , G06F40/242 , G06F40/126 , G06F16/335 , G06F16/35 , G06K9/62
Abstract: 本发明公开了一种基于BERT模型和K近邻的敏感信息识别方法,包括:步骤一、对文本进行预处理;步骤二、标注多条预处理文本为敏感信息和非敏感信息,步骤三、表征得到敏感信息的向量表征和非敏感信息的向量表征;步骤四、以敏感信息的向量表征为正类数据、以非敏感信息的向量表征为负类数据,构建近似最邻近搜索图;步骤五、将待测文本的向量表征输入至近似最邻近搜索图,搜索得到近似最近邻的K个节点,判断节点属性及根据该条待测文本的敏感度权重,修正其敏感度值后,判断是否为敏感信息。本发明公开了一种基于BERT模型和K近邻的敏感信息识别系统。本发明具有提升文本质量,提升敏感信息识别的速度和精度的有益效果。
-
公开(公告)号:CN110781297B
公开(公告)日:2022-06-21
申请号:CN201910881086.6
申请日:2019-09-18
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于层次判别树的多标签科研论文的分类方法,包括:步骤一、获取标签已知的论文和标签,提取标签的特征词语集合,构建二元判别模型;步骤二、将标签更新为二元判别模型,得层次判别树模型;步骤三、获取标签未知论文的文本表征,输入到层次判别树模型中根节点的所有二元判别模型中,计算具有该节点对应标签的概率,若大于阈值,则输出该根节点对应的标签;输入至该标签对应的节点的子节点的所有二元判别模型中,计算具有该节点代表标签的概率,若大于阈值,则输出该子节点对应的标签,逐级判断,直至叶节点;输出的所有标签即为该论文的标签。本发明具有充分挖掘论文的特征词语,快速、准确对论文进行层次分类的有益效果。
-
公开(公告)号:CN110781297A
公开(公告)日:2020-02-11
申请号:CN201910881086.6
申请日:2019-09-18
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于层次判别树的多标签科研论文的分类方法,包括:步骤一、获取标签已知的论文和标签,提取标签的特征词语集合,构建二元判别模型;步骤二、将标签更新为二元判别模型,得层次判别树模型;步骤三、获取标签未知论文的文本表征,输入到层次判别树模型中根节点的所有二元判别模型中,计算具有该节点对应标签的概率,若大于阈值,则输出该根节点对应的标签;输入至该标签对应的节点的子节点的所有二元判别模型中,计算具有该节点代表标签的概率,若大于阈值,则输出该子节点对应的标签,逐级判断,直至叶节点;输出的所有标签即为该论文的标签。本发明具有充分挖掘论文的特征词语,快速、准确对论文进行层次分类的有益效果。
-
公开(公告)号:CN110096575A
公开(公告)日:2019-08-06
申请号:CN201910375599.X
申请日:2019-05-07
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/33 , G06F16/958 , G16H10/20 , G16H20/70
Abstract: 本发明公开了一种面向微博用户的心理画像方法,包括:步骤一、在微博平台上选取样本用户,根据设定的心理学量表,利用调查问卷法获取样本用户的人格特征得分;步骤二、根据所述样本用户在微博平台上的文本信息,获取样本用户的文本表征,根据所述样本用户的行为信息,获取样本用户的行为表征;步骤三、根据样本用户的人格特征得分与文本表征和行为表征的对应关系,构建人格特征预测模型;步骤四、获取待测用户的文本表征和行为表征,根据人格特征预测模型,获得待测用户的人格特征。本发明能够实现对微博用户的人格特质的分析,为微博用户的心理画像提供技术支持。
-
公开(公告)号:CN106227768A
公开(公告)日:2016-12-14
申请号:CN201610559782.1
申请日:2016-07-15
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于互补语料的短文本观点挖掘方法,是基于属性的观点挖掘;具体为:首先,从某段微博语料中选取训练语料,进行分词处理,词性标注和筛选;根据观点词将训练语料进行属性词的标注;并使用词性标注做为特征训练最大熵模型;然后,针对某个事件的微博语料和新闻语料,构建跨语料的话题模型,并结合最大熵模型,分析该事件所属的话题并提取相应的属性词分布和观点词分布;最后,针对某个具体共享话题的所有观点词或者某个具体独享话题中的所有观点词,利用情感分类器进行极性分析。本发明适用于对舆情事件的属性分析及观点挖掘,具有高效性、鲁棒性和易用性的特点,在观点挖掘、舆情监控等领域具有重要的应用价值。
-
-
-
-
-
-
-
-