一种基于深度学习的海洋站水位时空预测方法及装置

    公开(公告)号:CN112862178A

    公开(公告)日:2021-05-28

    申请号:CN202110145655.8

    申请日:2021-02-02

    Abstract: 本发明公开了一种基于深度学习的海洋站水位时空预测方法及装置,该方法包括:获取待预测的海洋站多点水位的观测数据;多点水位的观测数据存在时空映射关系;将多点水位的观测数据输入提前训练后的CNN和LSTM深度学习模型;所述CNN模型用于提取水位空间特征数据;所述LSTM模型用于提取所述水位空间特征数据所对应的水位时间特征数据;基于水位空间特征数据和水位时间特征数据,通过全连接层输出所述待预测的海洋站水位预测结果。该方法可实现针对海洋站水位数据的高精度预报;仅需使用多个海洋站的水位序列数据,不需要使用其它数据;占用资源少,计算速度快。且可用于但不限于海洋站水位预报,也可用于水位要素以外其它要素预报。

Patent Agency Ranking