一种基于联邦学习的文本数据分布式处理方法

    公开(公告)号:CN119168105A

    公开(公告)日:2024-12-20

    申请号:CN202410438408.0

    申请日:2024-04-12

    Abstract: 本发明公开了一种基于联邦学习的文本数据分布式处理方法,包括下述步骤:通过数据采集和存储模块完成对特定人员的信息和活动数据采集,并建立统一的数据标准方法,将标注完成的数据放入数据库进行存储;完成无关数据清除、缺失值和异常值的处理、数据特征的统计及分组训练数据;采用LSTM神经网络模型构建联邦学习训练模块,并对其进行训练得到可用的预警模型;将预警模型部署在部门的本地服务器上,对特定人员的轨迹信息进行实时预测,进而判定是否存在危险行为,如果存在出现危险行为可能性,则及时采取措施;在解决现有技术中存在的数据流通困难、计算成本和难以进行全局优化等问题的同时,对特定人员的行动轨迹进行预测,从而保障公共安全。

    一种基于MobileSAM的电梯内通用场景监测方法

    公开(公告)号:CN117935141A

    公开(公告)日:2024-04-26

    申请号:CN202311801979.8

    申请日:2023-12-26

    Abstract: 本发明公开了一种基于MobileSAM的电梯内通用场景监测方法,通过对电梯内的拍摄的图像进行细粒度图像语义分割,实现了精细的场景分析,可以自动检测和识别电梯内的不同对象与场景,例如人员数量、物体数量与类别或事件类型等,包括下述步骤:1)数据采集:通过电梯内部摄像头采集图像或视频数据;2)图像预处理:将步骤1)所采集的数据进行图像预处理;3)语义分割:采用MobileSAM语义分割网络,对图像进行全场景语义分割,形成语义标签;4)业务实现:分析语义标签,确定电梯内的具体事件和情况。

    一种基于Transformer和CNN的敏感词检测方法

    公开(公告)号:CN118485069A

    公开(公告)日:2024-08-13

    申请号:CN202410504783.0

    申请日:2024-04-25

    Abstract: 本发明公开了一种基于Transformer和CNN的敏感词检测方法,解决传统的Transformer不能为长距离相关文本信息生成自适应权重,局部语义提取能力不足,在敏感词汇检测中词性理解能力不足的问题,包括:对待检测文本进行数据清洗、文本过滤、分词得到词语;使用 对词语进行填充,然后使用Word2Vec将单词映射到一个向量空间中的Word embeddings;生成每个单词的Position embeddings和Segment embeddings;将得到的三种embeddings分别相加作为Transformer网络的输入、相拼接作为CNN网络的输入进行处理;将Switchable Normalization的输出和最大池化的输出相加进行融合得到融合特征;将融合特征通过全连接层进行信息整合,送入Dropout层进行信息筛选,以0.5倍的权重与Dropout层的输出相加;最后再通过一个全连接层和Softmax进行二分类判别。

Patent Agency Ranking