一种基于作物物候期的多时序影像水稻估产方法

    公开(公告)号:CN112836575A

    公开(公告)日:2021-05-25

    申请号:CN202011607157.2

    申请日:2020-12-30

    Abstract: 本发明公开了一种基于作物物候期的多时序影像水稻估产方法,属于遥感技术、作物估产技术领域,目的是解决反演结果的精度不准确,模型不稳定以及没有考虑长势、灾害及土壤墒情的影响的问题;该方法采用BP神经网络算法,运用matlab2019b编程、GUI设计建立水稻估产模型,运用水稻物候期的植被指数、水稻长势等级数据、水稻灾害等级数据,土壤墒情数据及实地测产数据,进行模型训练,建立最优模型,利用最优模型结合目标区影像进行水稻估产,得到目标区产量等级分布栅格数。本发明利用遥感技术进行卫星影像数据处理及植被指数、长势、灾害、土壤墒情的提取,反演目标区域产量,节约生产成本进而提高生产效率,同时达到精确估产的目的。

    一种基于作物物候期的多时序影像水稻估产方法

    公开(公告)号:CN112836575B

    公开(公告)日:2023-06-27

    申请号:CN202011607157.2

    申请日:2020-12-30

    Abstract: 本发明公开了一种基于作物物候期的多时序影像水稻估产方法,属于遥感技术、作物估产技术领域,目的是解决反演结果的精度不准确,模型不稳定以及没有考虑长势、灾害及土壤墒情的影响的问题;该方法采用BP神经网络算法,运用matlab2019b编程、GUI设计建立水稻估产模型,运用水稻物候期的植被指数、水稻长势等级数据、水稻灾害等级数据,土壤墒情数据及实地测产数据,进行模型训练,建立最优模型,利用最优模型结合目标区影像进行水稻估产,得到目标区产量等级分布栅格数。本发明利用遥感技术进行卫星影像数据处理及植被指数、长势、灾害、土壤墒情的提取,反演目标区域产量,节约生产成本进而提高生产效率,同时达到精确估产的目的。

Patent Agency Ranking