一种基于深度学习的船舶图像目标检测方法

    公开(公告)号:CN111914935A

    公开(公告)日:2020-11-10

    申请号:CN202010766653.6

    申请日:2020-08-03

    Abstract: 本发明提供一种基于深度学习的船舶目标检测与识别方法,包括以下步骤:S1:搭建像素注意力模型,并对船舶图像进行预处理;S2:使用K-Means聚类生成船舶锚定框,并对标签边界框进行转换;S3:搭建基于像素注意力模型的YOLOV3网络结构;S4:使用训练优化方法训练网络;S5:使用非极大值抑制算法对网络输出进行后处理,避免出现重复检测问题。本发明提供的基于深度学习的船舶目标检测与识别方法,能够在多种复杂背景与分辨率下对实现船舶目标检测与识别,在船舶工业与海事管理等领域有较好的使用前景。

    一种基于混合小波包特征深度学习的语音情感识别方法

    公开(公告)号:CN112151071A

    公开(公告)日:2020-12-29

    申请号:CN202011006934.8

    申请日:2020-09-23

    Abstract: 本发明提供基于混合小波包特征深度学习的语音情感识别方法,S1:通过自相关函数算法对语音数据进行端点检测;S2:将语音序列数据截取成相同长度,将语音序列采样统一为1024,针对该序列用3层小波包重构算法生成新的8个重构信号,组成特征集1;S3:将语音信号直接通过快速傅里叶变换(FFT)提取140个融合了LLDs及其泛化函数的特征值,组成特征集2;S4:将特征集2用DNN的深度学习结构进行进一步提取特征,将特征集1进行进一步提取特征;S5:将两种利用不同结构所提取到的特征集融合在一起,利用Softmax损失函数进行最终分类。本发明能够混有噪声的情况下,能够充分提取语音信号的时域信息和频域信息特征,进而利用深度学习算法实现。

    一种基于深度学习和K-曲率法的指尖跟踪方法

    公开(公告)号:CN113608663B

    公开(公告)日:2023-07-25

    申请号:CN202110783266.8

    申请日:2021-07-12

    Abstract: 本发明公开了一种基于深度学习和K‑曲率法的指尖跟踪方法,首先利用YOLOv3网络模型训练预处理后的数据集,获取指尖检测模型;再利用摄像头获取视频流,输入检测模型并检测出检测框信息,初始化卡尔曼滤波器;然后利用卡尔曼滤波器得到预测框,计算出本帧检测框和预测框的IOU,设定IOU阈值,判断该IOU是否大于IOU阈值,若该IOU大于IOU阈值则更新卡尔曼滤波器得到指尖跟踪框;否则,利用K‑曲率法对指尖位置进行校正,并更新卡尔曼滤波器;最后设定一个时间阈值T‑max,在该时间阈值帧内未检测跟踪信息,则终止跟踪。本发明减弱了复杂环境对检测准确性的影响,提升了检测速度,增加了准确性和鲁棒性。

    一种基于深度学习的船舶图像目标检测方法

    公开(公告)号:CN111914935B

    公开(公告)日:2022-07-15

    申请号:CN202010766653.6

    申请日:2020-08-03

    Abstract: 本发明提供一种基于深度学习的船舶目标检测与识别方法,包括以下步骤:S1:搭建像素注意力模型,并对船舶图像进行预处理;S2:使用K‑Means聚类生成船舶锚定框,并对标签边界框进行转换;S3:搭建基于像素注意力模型的YOLOV3网络结构;S4:使用训练优化方法训练网络;S5:使用非极大值抑制算法对网络输出进行后处理,避免出现重复检测问题。本发明提供的基于深度学习的船舶目标检测与识别方法,能够在多种复杂背景与分辨率下对实现船舶目标检测与识别,在船舶工业与海事管理等领域有较好的使用前景。

    一种基于深度学习和K-曲率法的指尖跟踪方法

    公开(公告)号:CN113608663A

    公开(公告)日:2021-11-05

    申请号:CN202110783266.8

    申请日:2021-07-12

    Abstract: 本发明公开了一种基于深度学习和K‑曲率法的指尖跟踪方法,首先利用YOLOv3网络模型训练预处理后的数据集,获取指尖检测模型;再利用摄像头获取视频流,输入检测模型并检测出检测框信息,初始化卡尔曼滤波器;然后利用卡尔曼滤波器得到预测框,计算出本帧检测框和预测框的IOU,设定IOU阈值,判断该IOU是否大于IOU阈值,若该IOU大于IOU阈值则更新卡尔曼滤波器得到指尖跟踪框;否则,利用K‑曲率法对指尖位置进行校正,并更新卡尔曼滤波器;最后设定一个时间阈值T‑max,在该时间阈值帧内未检测跟踪信息,则终止跟踪。本发明减弱了复杂环境对检测准确性的影响,提升了检测速度,增加了准确性和鲁棒性。

    一种基于混合小波包特征深度学习的语音情感识别方法

    公开(公告)号:CN112151071B

    公开(公告)日:2022-10-28

    申请号:CN202011006934.8

    申请日:2020-09-23

    Abstract: 本发明提供基于混合小波包特征深度学习的语音情感识别方法,S1:通过自相关函数算法对语音数据进行端点检测;S2:将语音序列数据截取成相同长度,将语音序列采样统一为1024,针对该序列用3层小波包重构算法生成新的8个重构信号,组成特征集1;S3:将语音信号直接通过快速傅里叶变换(FFT)提取140个融合了LLDs及其泛化函数的特征值,组成特征集2;S4:将特征集2用DNN的深度学习结构进行进一步提取特征,将特征集1进行进一步提取特征;S5:将两种利用不同结构所提取到的特征集融合在一起,利用Softmax损失函数进行最终分类。本发明能够混有噪声的情况下,能够充分提取语音信号的时域信息和频域信息特征,进而利用深度学习算法实现。

Patent Agency Ranking