基于一维卷积非对称双向长短时记忆网络的声纹识别方法

    公开(公告)号:CN109637545A

    公开(公告)日:2019-04-16

    申请号:CN201910045664.2

    申请日:2019-01-17

    CPC classification number: G10L17/02 G10L17/04 G10L17/06 G10L17/18

    Abstract: 基于一维卷积非对称双向长短时记忆网络的声纹识别方法,属于声纹识别技术领域。本发明首先对原始语音信号进行预处理;构建非对称双向长短时记忆网络ABLSTM模型,以7:3的比例分配正向传播的LSTM和反向传播的LSTM的隐藏层神经元个数和输出层权重,使识别结果更大程度取决于正向传播的LSTM,提高声纹识别的精度;采用1DCNN进行声纹特征提取,利用最大池化操作减少特征参数,保留特征语音的声纹特征,并采用Leaky ReLU激活函数处理特征提取结果;采用提取同一时刻的声纹特征作为提出的非对称双向长短时记忆网络模型一个时间步的输入,利用归一化指数函数实现较精确的声纹识别。本发明方法训练速度较快,能更好的提高声纹识别的正确率,有一定的有效性。

Patent Agency Ranking