-
公开(公告)号:CN114565806A
公开(公告)日:2022-05-31
申请号:CN202210170641.6
申请日:2022-02-24
Applicant: 哈尔滨工程大学
Abstract: 本发明属于图像处理技术领域,具体涉及一种基于表征增强的特征域优化小样本图像转换方法。本发明通过引入直方图均衡算法和Canny算法先验知识,对图像对比度信息和边缘信息进行增强处理,在此基础上通过基于亚像素卷积的通道注意力机制改善网络特征提取能力,进行图像表征增强,解决图像细微特征不突出的问题。本发明提出基于特征域优化算法的转换机制,通过引入对抗思想自适应划分特征域和内容域,利用源域中多类丰富的图像缩小参数空间,噪声策略的添加使得网络不局限于单一样本的生成,减缓模式崩塌问题;根据源域和目标域的特点,构建重建策略,利用弱化后的循环语义一致性完成小样本图像转换任务,并获得视觉效果更好的转换图像。
-
公开(公告)号:CN111444955A
公开(公告)日:2020-07-24
申请号:CN202010216387.X
申请日:2020-03-25
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于类意识领域自适应的水下声纳图像无监督分类方法,包括:(1)利用生成对抗网络构建生成数据集;(2)提出基于对抗自编码器的改进方法构建领域自适应的源域;(3)提出基于对抗学习方法构建领域自适应的目标域;(4)训练目标域,在均衡和非均衡两种原生数据集上完成水下声纳图像无监督分类。本发明提出使用CGAN和DCGAN两种GANs来生成图像以构建水下声纳图像生成数据集,并根据标签缺失的情况,将无监督领域自适应方法引入到水下声纳图像的无监督分类中。同时构建均衡和非均衡两种水下声纳图像原生数据集上以验证本发明所提方法的适应性。
-
公开(公告)号:CN114565806B
公开(公告)日:2024-12-13
申请号:CN202210170641.6
申请日:2022-02-24
Applicant: 哈尔滨工程大学
IPC: G06V10/774 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/08 , G06T5/70 , G06T5/50 , G06T7/13
Abstract: 本发明属于图像处理技术领域,具体涉及一种基于表征增强的特征域优化小样本图像转换方法。本发明通过引入直方图均衡算法和Canny算法先验知识,对图像对比度信息和边缘信息进行增强处理,在此基础上通过基于亚像素卷积的通道注意力机制改善网络特征提取能力,进行图像表征增强,解决图像细微特征不突出的问题。本发明提出基于特征域优化算法的转换机制,通过引入对抗思想自适应划分特征域和内容域,利用源域中多类丰富的图像缩小参数空间,噪声策略的添加使得网络不局限于单一样本的生成,减缓模式崩塌问题;根据源域和目标域的特点,构建重建策略,利用弱化后的循环语义一致性完成小样本图像转换任务,并获得视觉效果更好的转换图像。
-
公开(公告)号:CN111444955B
公开(公告)日:2022-08-02
申请号:CN202010216387.X
申请日:2020-03-25
Applicant: 哈尔滨工程大学
IPC: G06V10/764 , G06K9/62 , G06V10/26 , G06V10/40 , G06T7/11 , G06V10/774
Abstract: 本发明提供一种基于类意识领域自适应的水下声纳图像无监督分类方法,包括:(1)利用生成对抗网络构建生成数据集;(2)提出基于对抗自编码器的改进方法构建领域自适应的源域;(3)提出基于对抗学习方法构建领域自适应的目标域;(4)训练目标域,在均衡和非均衡两种原生数据集上完成水下声纳图像无监督分类。本发明提出使用CGAN和DCGAN两种GANs来生成图像以构建水下声纳图像生成数据集,并根据标签缺失的情况,将无监督领域自适应方法引入到水下声纳图像的无监督分类中。同时构建均衡和非均衡两种水下声纳图像原生数据集上以验证本发明所提方法的适应性。
-
-
-