核动力装置故障诊断方法

    公开(公告)号:CN107316057B

    公开(公告)日:2020-09-25

    申请号:CN201710421200.8

    申请日:2017-06-07

    Abstract: 本发明提供的是一种基于局部线性嵌入与K‑最近邻分类器的核动力装置故障诊断方法。(1)获取核动力装置在稳态运行和典型事故状态下的运行数据作为训练数据;(2)采用均值‑方差标准化方法将训练数据进行无量纲的标准化处理得到高维样本数据;(3)采用局部线性嵌入算法提取高维样本数据的低维流形结构,得到低维特征向量;(4)将低维特征向量输入K‑最近邻分类器中进行分类训练;(5)获取核动力装置实时运行数据,重复(2)、(3);(6)利用已经训练好的K‑最近邻分类器对特征向量分类决策。本发明利用非线性流形学习方法在特征降维提取方面的优势,适用于非线性,数据高维数系统的故障诊断,具有很高的故障诊断准确度。

    基于局部线性嵌入与K-最近邻分类器的核动力装置故障诊断方法

    公开(公告)号:CN107316057A

    公开(公告)日:2017-11-03

    申请号:CN201710421200.8

    申请日:2017-06-07

    Abstract: 本发明提供的是一种基于局部线性嵌入与K-最近邻分类器的核动力装置故障诊断方法。(1)获取核动力装置在稳态运行和典型事故状态下的运行数据作为训练数据;(2)采用均值-方差标准化方法将训练数据进行无量纲的标准化处理得到高维样本数据;(3)采用局部线性嵌入算法提取高维样本数据的低维流形结构,得到低维特征向量;(4)将低维特征向量输入K-最近邻分类器中进行分类训练;(5)获取核动力装置实时运行数据,重复(2)、(3);(6)利用已经训练好的K-最近邻分类器对特征向量分类决策。本发明利用非线性流形学习方法在特征降维提取方面的优势,适用于非线性,数据高维数系统的故障诊断,具有很高的故障诊断准确度。

Patent Agency Ranking