-
公开(公告)号:CN111147396A
公开(公告)日:2020-05-12
申请号:CN201911366473.2
申请日:2019-12-26
Applicant: 哈尔滨工程大学
IPC: H04L12/851 , H04L1/00
Abstract: 本发明提供一种基于序列特征的加密流量分类方法,通过对原始加密流量数据进行预处理;将预处理后的数据使用基于注意力机制的一维卷积网络学习数据分组的局部特征;将局部特征的输出结果使用长短时记忆网络学习数据分组的全局特征。本发明不需要人工提取特征,并且在此基础上,能够保证加密流量数据原有的序列特征,将其指定到具体应用;解决了的传统循环神经网络严重的梯度消失和梯度爆炸的问题;有效地解决了关于两种不同传输层协议的数据包长度不同的问题,并且过滤了网络层和数据链路层的干扰信息;很好地解决了长序列数据的预测问题。
-
公开(公告)号:CN111147396B
公开(公告)日:2023-03-21
申请号:CN201911366473.2
申请日:2019-12-26
Applicant: 哈尔滨工程大学
IPC: H04L47/2441 , H04L1/00
Abstract: 本发明提供一种基于序列特征的加密流量分类方法,通过对原始加密流量数据进行预处理;将预处理后的数据使用基于注意力机制的一维卷积网络学习数据分组的局部特征;将局部特征的输出结果使用长短时记忆网络学习数据分组的全局特征。本发明不需要人工提取特征,并且在此基础上,能够保证加密流量数据原有的序列特征,将其指定到具体应用;解决了的传统循环神经网络严重的梯度消失和梯度爆炸的问题;有效地解决了关于两种不同传输层协议的数据包长度不同的问题,并且过滤了网络层和数据链路层的干扰信息;很好地解决了长序列数据的预测问题。
-