基于像素注意力机制胶囊网络模型的声学事件检测方法

    公开(公告)号:CN113012714A

    公开(公告)日:2021-06-22

    申请号:CN202110197042.9

    申请日:2021-02-22

    Abstract: 本发明提供一种基于像素注意力机制胶囊网络模型的声学事件检测方法,包括如下步骤:(1)对原始音频数据进行预处理;(2)提出构建像素注意力机制胶囊网络‑双向门控循环单元网络(Pixel‑Based Attention of Capsule Network‑Bidirectional Gated Recurrent Unit,PBAttCapsNet‑BGRU)模型;(3)完成基于像素注意力机制胶囊网络模型的声学事件检测任务。本发明为了取得对不连续、重叠声学事件较好的检测效果,提出一种基于像素注意力机制胶囊网络模型的声学事件检测方法。通过与其他声学事件检测方法的性能对比,本发明提出的基于像素注意力机制胶囊网络模型的声学事件检测方法能够有效地对不连续、重叠声学事件进行检测,并提升检测性能。

    一种基于双通道自监督声特征学习的水下目标识别方法

    公开(公告)号:CN116612376A

    公开(公告)日:2023-08-18

    申请号:CN202310512402.9

    申请日:2023-05-08

    Abstract: 本发明为了深入研究对比式自监督特征学习方法提升水下目标识别任务性能,提出一种基于双通道自监督声特征学习的水下目标识别方法。包括如下步骤:(1)提出构建双通道自注意力音频编码器模型;(2)提出构建动态正样本存储的双通道自注意力音频编码器模型;(3)完成基于动态正样本存储的双通道自注意力音频编码器模型的水下目标识别方法,提取动态正样本存储的双通道自注意力音频编码器谱图特征,利用多层感知机模型和多分类逻辑回归模型完成水下目标识别任务。本发明提出的一种基于双通道自监督声特征学习的水下目标识别方法具备良好的识别精度和收敛速度,能够有效的在噪声环境下对水下目标进行识别,表现出较强的鲁棒性。

    基于像素注意力机制胶囊网络模型的声学事件检测方法

    公开(公告)号:CN113012714B

    公开(公告)日:2022-08-02

    申请号:CN202110197042.9

    申请日:2021-02-22

    Abstract: 本发明提供一种基于像素注意力机制胶囊网络模型的声学事件检测方法,包括如下步骤:(1)对原始音频数据进行预处理;(2)提出构建像素注意力机制胶囊网络‑双向门控循环单元网络(Pixel‑Based Attention of Capsule Network‑Bidirectional Gated Recurrent Unit,PBAttCapsNet‑BGRU)模型;(3)完成基于像素注意力机制胶囊网络模型的声学事件检测任务。本发明为了取得对不连续、重叠声学事件较好的检测效果,提出一种基于像素注意力机制胶囊网络模型的声学事件检测方法。通过与其他声学事件检测方法的性能对比,本发明提出的基于像素注意力机制胶囊网络模型的声学事件检测方法能够有效地对不连续、重叠声学事件进行检测,并提升检测性能。

Patent Agency Ranking