-
公开(公告)号:CN109766838B
公开(公告)日:2022-04-12
申请号:CN201910026947.2
申请日:2019-01-11
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于卷积神经网络的步态周期检测方法,对步态视频进行预处理,包括视频解码,行人轮廓提取和质心归一化的图像预处理操作;训练用于提取步态周期性特征的卷积神经网络;将待测的步态视频帧序列送入卷积神经网络中,输出波形经过滤波后,通过确定相邻的波峰与波谷的位置即得到一个步态周期。该方法对角度变化、服饰和携带物变化都有很强的鲁棒性,解决了在正面和背面视角下难以检测步态周期的问题,本发明方法对提高复杂环境中步态识别精度有重要意义,可用于步态识别中的前端,适用于安全监控、人机交互、医疗诊断和门禁系统等中的身份识别中。
-
公开(公告)号:CN109766838A
公开(公告)日:2019-05-17
申请号:CN201910026947.2
申请日:2019-01-11
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于卷积神经网络的步态周期检测方法,对步态视频进行预处理,包括视频解码,行人轮廓提取和质心归一化的图像预处理操作;训练用于提取步态周期性特征的卷积神经网络;将待测的步态视频帧序列送入卷积神经网络中,输出波形经过滤波后,通过确定相邻的波峰与波谷的位置即得到一个步态周期。该方法对角度变化、服饰和携带物变化都有很强的鲁棒性,解决了在正面和背面视角下难以检测步态周期的问题,本发明方法对提高复杂环境中步态识别精度有重要意义,可用于步态识别中的前端,适用于安全监控、人机交互、医疗诊断和门禁系统等中的身份识别中。
-