一种工业系统中缺失的时序数据的填充方法

    公开(公告)号:CN113591954A

    公开(公告)日:2021-11-02

    申请号:CN202110818499.7

    申请日:2021-07-20

    Abstract: 本发明公开了一种工业系统中缺失的时序数据的填充方法,包括步骤一:数据预处理;步骤二:针对缺失的多元时序数据,以边界平衡生成对抗网络BEGAN模型为基础,构建生成对抗网络模型BiGRU‑BEGAN;步骤三:训练BiGRU‑BEGAN网络模型;步骤四:用训练好的BiGRU‑BEGAN模型生成完整的人工数据并填充原始缺失数据。本发明通过生成对抗网络与双向循环神经网络结合的模型,最大化利用真实存在的数据信息,生成符合原始缺失数据特征分布规律的完整人工数据,再将缺失数据填充完整。利用填充好的完整数据进行后续的故障分类任务,增加缺失数据的分类准确率。

    一种针对工业过程时序数据的预测方法

    公开(公告)号:CN115062528A

    公开(公告)日:2022-09-16

    申请号:CN202210295183.9

    申请日:2022-03-23

    Abstract: 本发明公开了一种针对工业过程时序数据的预测方法,属于工业过程时序数据预测领域。本发明包括:准备训练数据集;构建深度长短期记忆网络(Deep‑LSTM)模型,增加LSTM单元个数和网络层数;训练Deep‑LSTM网络模型;将测试数据集输入到训练完成后的Deep‑LSTM,通过网络可预测出λ个未知数据,并计算预测值与真实值的误差,验证网络的预测效果及精度。本发明针对时序数据预测中故障数据样本不足和预测精度的问题,利用改进的GRU‑BEGAN生成对抗网络模型生成人工样本来扩充原始数据集,并利用Deep‑LSTM模型预测工业过程时序数据。

    一种工业系统中缺失的时序数据的填充方法

    公开(公告)号:CN113591954B

    公开(公告)日:2023-10-27

    申请号:CN202110818499.7

    申请日:2021-07-20

    Abstract: 本发明公开了一种工业系统中缺失的时序数据的填充方法,包括步骤一:数据预处理;步骤二:针对缺失的多元时序数据,以边界平衡生成对抗网络BEGAN模型为基础,构建生成对抗网络模型BiGRU‑BEGAN;步骤三:训练BiGRU‑BEGAN网络模型;步骤四:用训练好的BiGRU‑BEGAN模型生成完整的人工数据并填充原始缺失数据。本发明通过生成对抗网络与双向循环神经网络结合的模型,最大化利用真实存在的数据信息,生成符合原始缺失数据特征分布规律的完整人工数据,再将缺失数据填充完整。利用填充好的完整数据进行后续的故障分类任务,增加缺失数据的分类准确率。

    一种针对时序数据预测的特征优化方法

    公开(公告)号:CN115982141A

    公开(公告)日:2023-04-18

    申请号:CN202211542378.5

    申请日:2022-12-03

    Abstract: 本发明公开了一种针对时序数据预测的特征优化方法,步骤1、获取待预测时序数据集;步骤2、使用相关性分析方法对时序数据集特征参数进行相关性计算,计算数据集各特征参数之间的相关系数;步骤3、根据步骤2得到其他特征参数与预测目标特征参数的相关系数,根据不同相关系数阈值选择得到若干特征参数子集;步骤4、将特征参数子集分别输入预先训练好的长短期记忆网络模型,输出预测目标特征参数as的预测值,根据各个特征参数子集对应预测值与真实值的误差得到预测目标特征参数as对应的最优特征子集,长短期记忆网络模型由训练时序数据集对应特征参数子集训练得到的;本发明对高维数据输入进行优化,剔除对预测无效的特征,建立最优特征子集。

Patent Agency Ranking