一种基于SGRU神经网络的UUV集群行为识别技术

    公开(公告)号:CN109409200A

    公开(公告)日:2019-03-01

    申请号:CN201811017220.X

    申请日:2018-09-01

    Abstract: 本发明提供一种基于SGRU神经网络的UUV集群行为识别技术。本发明具体步骤为数据预处理阶段,对UUV集群行为数据集进行数据清洗,包括处理数据不平衡问题、缺失值问题;模型训练阶段,利用数据预处理后的数据集训练SGRU神经网络,建立UUV集群行为识别模型;模型预测阶段,获取当前软件失效数据并进行数据预处理过程,然后输入所获得的SGRU预测模型进行UUV集群行为识别的预测,得到预测结果。本发明克服传统GRU神经网络结构过于复杂,泛化能力差的问题,并且应用SGRU建立精确高效的UUV集群行为识别模型,解决传统方法无法准确识别UUV集群行为的问题。

    一种快速填补栅格地图中凹形区域的方法

    公开(公告)号:CN109827585B

    公开(公告)日:2022-08-02

    申请号:CN201910126765.2

    申请日:2019-02-20

    Abstract: 本发明属于机器人路径规划领域,具体涉及一种快速填补栅格地图中凹形区域的方法,包括以下步骤:获取占据栅格地图,选定一个重力作用方向,通常选择为上下左右四个方向,以下步骤选定重力方向向下;遍历地图寻找拥有支撑力的一个栅格单元,也即其正下方有障碍物栅格单元,并且该栅格单元本身不是障碍物;在该栅格单元左右开始进行水平方向上的扩充,直到填满整个水平层,也即扩展到左右两侧皆为障碍物,在该过程中持续检查是否存在某一格子上方有障碍物、或者某一格子下方没有障碍物的情况,如果存在,则返回上一步。本发明不依赖于计算机图形学中的凸包问题,是一种快速、直观、方便应用的方法。

    一种基于DBQ算法的路径规划方法

    公开(公告)号:CN110389591A

    公开(公告)日:2019-10-29

    申请号:CN201910809463.5

    申请日:2019-08-29

    Abstract: 本发明属于机器人路径规划领域,具体涉及一种基于DBQ算法的路径规划方法。本发明所提出的路径规划方法通过对强化学习Dyna-Q算法中的动作选择机制进行改进主要解决三个路径规划问题:其一,解决机器人在这种环境中学习的早期阶段学习效率低的问题;其二,提高了机器路径规划的精度;其三,加快了算法的收敛速度。

    一种基于动态分组码的数据容错方法

    公开(公告)号:CN109491835A

    公开(公告)日:2019-03-19

    申请号:CN201811250945.3

    申请日:2018-10-25

    Abstract: 本发明提出了一种基于动态分组码的数据容错方法,属于数据存储技术领域,具体涉及分布式存储系统中数据的容错问题,利用基于动态分组码的数据容错方法恢复丢失或失效的数据。首先按照分布式系统中磁盘的分组对将要存储的数据进行分块存储。当一个条带的数据存储完全时,对这个条带上的数据块应用DLRC编码,生成全局校验块和局部校验块并存储到校验块的磁盘中。当发现有数据块失效时,读取参与重构的节点数据,利用DLRC编码进行反向计算,重构出丢失的数据并重新存储到磁盘。本发明实现了存储开销、容错能力和重构开销的动态平衡,可以适用于不同存储系统的需求。在消耗同样的存储空间的情况下,DLRC编码容错能力高、重构开销低,具有良好的实用价值。

    一种简化的门控单元神经网络

    公开(公告)号:CN109376848A

    公开(公告)日:2019-02-22

    申请号:CN201811017375.3

    申请日:2018-09-01

    Abstract: 本发明公开一种简化的门控单元神经网络,属于深度学习领域。本发明包括:对输入数据集进行数据清洗,选择经典数据集,如Iris数据集,此过程处理数据不平衡问题、归一化以及冗余数据处理问题;利用数据预处理后的数据集训练OGRU神经网络,建立预测模型;获取数据集,进行数据预处理过程,然后输入所获得的OGRU预测模型进行模型预测,得到预测结果。本发明克服传统GRU神经网络结构过于复杂,泛化能力差的问题,并且应用OGRU建立精确高效的预测模型,解决传统方法训练时间过长问题。

    一种快速填补栅格地图中凹形区域的方法

    公开(公告)号:CN109827585A

    公开(公告)日:2019-05-31

    申请号:CN201910126765.2

    申请日:2019-02-20

    Abstract: 本发明属于机器人路径规划领域,具体涉及一种快速填补栅格地图中凹形区域的方法,包括以下步骤:获取占据栅格地图,选定一个重力作用方向,通常选择为上下左右四个方向,以下步骤选定重力方向向下;遍历地图寻找拥有支撑力的一个栅格单元,也即其正下方有障碍物栅格单元,并且该栅格单元本身不是障碍物;在该栅格单元左右开始进行水平方向上的扩充,直到填满整个水平层,也即扩展到左右两侧皆为障碍物,在该过程中持续检查是否存在某一格子上方有障碍物、或者某一格子下方没有障碍物的情况,如果存在,则返回上一步。本发明不依赖于计算机图形学中的凸包问题,是一种快速、直观、方便应用的方法。

    一种基于动态分组码的数据容错方法

    公开(公告)号:CN109491835B

    公开(公告)日:2022-04-12

    申请号:CN201811250945.3

    申请日:2018-10-25

    Abstract: 本发明提出了一种基于动态分组码的数据容错方法,属于数据存储技术领域,具体涉及分布式存储系统中数据的容错问题,利用基于动态分组码的数据容错方法恢复丢失或失效的数据。首先按照分布式系统中磁盘的分组对将要存储的数据进行分块存储。当一个条带的数据存储完全时,对这个条带上的数据块应用DLRC编码,生成全局校验块和局部校验块并存储到校验块的磁盘中。当发现有数据块失效时,读取参与重构的节点数据,利用DLRC编码进行反向计算,重构出丢失的数据并重新存储到磁盘。本发明实现了存储开销、容错能力和重构开销的动态平衡,可以适用于不同存储系统的需求。在消耗同样的存储空间的情况下,DLRC编码容错能力高、重构开销低,具有良好的实用价值。

    一种基于改进拍卖算法的围捕者决策方法

    公开(公告)号:CN110488849A

    公开(公告)日:2019-11-22

    申请号:CN201910810370.4

    申请日:2019-08-29

    Abstract: 本发明属于多机器人任务分配领域,具体涉及一种基于改进拍卖算法的围捕者决策方法。本发明针对传统拍卖算法中拍卖者身份的缺陷和竞标值存在的不足导致围捕者的选定过程安全性差和决策效率低的问题提出了一种基于改进拍卖算法的围捕者决策方法,作为围捕者的决策方法,用来选定围捕者。本发明通过引入几何中心原理,改变了传统确定拍卖者身份的方式,进而加快了拍卖过程,提高了决策效率,增强了决策过程的安全性;通过改进竞标值函数,来确定最佳的围捕者身份,提高了整体的围捕效率。

Patent Agency Ranking