一种基于全局注意力关系网络的小样本船舶目标识别方法

    公开(公告)号:CN113869418B

    公开(公告)日:2024-07-02

    申请号:CN202111147583.7

    申请日:2021-09-29

    Abstract: 本发明提供一种基于全局注意力关系网络的小样本船舶目标识别方法,包括以下步骤:S1:使用Meta‑Learning数据划分方式生成小样本任务集,并进行模型加载及训练;S2:搭建跨目标全局注意力机制模型;S3:搭建基于跨目标全局注意力机制的RN网络结构;S4:使用Cosine距离度量样本特征相似度,并对距离长度进行比较目标样本特征;S5:使用训练优化方法训练网络。本发明提供的基于全局注意力关系网络的小样本船舶目标识别方法,能够在真实海况、复杂多场景海况、目标类别样本量不均衡的情况下实现小样本船舶目标识别,在船舶工业与海事管理等领域有较好的使用前景。

    一种基于全局注意力关系网络的小样本船舶目标识别方法

    公开(公告)号:CN113869418A

    公开(公告)日:2021-12-31

    申请号:CN202111147583.7

    申请日:2021-09-29

    Abstract: 本发明提供一种基于全局注意力关系网络的小样本船舶目标识别方法,包括以下步骤:S1:使用Meta‑Learning数据划分方式生成小样本任务集,并进行模型加载及训练;S2:搭建跨目标全局注意力机制模型;S3:搭建基于跨目标全局注意力机制的RN网络结构;S4:使用Cosine距离度量样本特征相似度,并对距离长度进行比较目标样本特征;S5:使用训练优化方法训练网络。本发明提供的基于全局注意力关系网络的小样本船舶目标识别方法,能够在真实海况、复杂多场景海况、目标类别样本量不均衡的情况下实现小样本船舶目标识别,在船舶工业与海事管理等领域有较好的使用前景。

Patent Agency Ranking