-
公开(公告)号:CN110488868B
公开(公告)日:2022-10-28
申请号:CN201910813883.0
申请日:2019-08-30
Applicant: 哈尔滨工程大学
IPC: G05D1/10
Abstract: 本发明提供了一种多无人机协助用户的移动卸载方法,属于移动云计算领域。本发明从无人机资源分配、航迹规划和任务分配三方面对多用户上传和下载需求的移动迁移进行建模;然后利用一个三阶段的迭代算法对模型进行转化、松弛并利用分支定界法进行迭代求解,得到最优的资源分配、任务分配以及航迹规划方案。本发明的有益效果在于:本发明提出的移动卸载方法同时考虑到用户的上传需求和下载需求,极大地提高了用户的计算速率;本发明提出的移动卸载方法通过最大化所有用户中最小的计算速率,实现用户的公平性。
-
公开(公告)号:CN110458033A
公开(公告)日:2019-11-15
申请号:CN201910644318.6
申请日:2019-07-17
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于可穿戴位置传感器的人体行为序列识别方法,具体步骤包括:数据采集、数据分割、识别。解决了使用可穿戴传感器进行人体行为识别中,对运动序列进行划分时步骤繁琐、模型复杂度较高的问题,通过结合参考传感器标签的高程和水平信息的变化,在识别前,对数据预先进行0级、1级、2级三个参考级别的分割,而不依赖于复杂的模型,实现了高效的对运动序列的划分以及识别,降低分割过程模型复杂度。
-
公开(公告)号:CN110458033B
公开(公告)日:2023-01-03
申请号:CN201910644318.6
申请日:2019-07-17
Applicant: 哈尔滨工程大学
IPC: G06V40/20 , G06V10/764
Abstract: 本发明提供一种基于可穿戴位置传感器的人体行为序列识别方法,具体步骤包括:数据采集、数据分割、识别。解决了使用可穿戴传感器进行人体行为识别中,对运动序列进行划分时步骤繁琐、模型复杂度较高的问题,通过结合参考传感器标签的高程和水平信息的变化,在识别前,对数据预先进行0级、1级、2级三个参考级别的分割,而不依赖于复杂的模型,实现了高效的对运动序列的划分以及识别,降低分割过程模型复杂度。
-
公开(公告)号:CN110488868A
公开(公告)日:2019-11-22
申请号:CN201910813883.0
申请日:2019-08-30
Applicant: 哈尔滨工程大学
IPC: G05D1/10
Abstract: 本发明提供了一种多无人机协助用户的移动卸载方法,属于移动云计算领域。本发明从无人机资源分配、航迹规划和任务分配三方面对多用户上传和下载需求的移动迁移进行建模;然后利用一个三阶段的迭代算法对模型进行转化、松弛并利用分支定界法进行迭代求解,得到最优的资源分配、任务分配以及航迹规划方案。本发明的有益效果在于:本发明提出的移动卸载方法同时考虑到用户的上传需求和下载需求,极大地提高了用户的计算速率;本发明提出的移动卸载方法通过最大化所有用户中最小的计算速率,实现用户的公平性。
-
-
-