-
公开(公告)号:CN114563760B
公开(公告)日:2023-02-07
申请号:CN202210115326.3
申请日:2022-02-07
Applicant: 哈尔滨工程大学
Abstract: 本发明提出了一种基于SCA阵型的二阶超波束形成方法、设备及介质,所述SCA阵型由三个ULA穿插组成的,首先,利用常规波束形成技术对子阵1和子阵2的接收信号进行处理;其次,利用分裂波束对子阵3的接收信号进行处理;然后,利用以上结果计算二阶“和”波束以及二阶“差”波束;将二阶“和”波束以及二阶“差”波束进行高阶差运算获得二阶超波束形成输出;通过对二阶超波束方位谱的谱峰搜索即可得到波达方向的估计值。通过仿真结果验证表明,本发明所述方法能有效锐化波束、抑制旁瓣高度,且在相干多目标条件下估计精度优于最小处理器和MUSIC。
-
公开(公告)号:CN116222750A
公开(公告)日:2023-06-06
申请号:CN202310284229.1
申请日:2023-03-22
Applicant: 哈尔滨工程大学
Abstract: 适用于高频窄脉宽声信标信号的随机共振检测器及方法,涉及水声信号处理领域。解决了现有随机共振检测方法不适用于窄脉宽信号的检测的问题。本发明方法步骤一、将接收到的待检测信号依次经过混频器和滤波器获得滤波后的差频信号;步骤二、确定参数归一化随机共振系统的参数,将滤波后的差频信号输入至共振系统后,输出随机共振信号;步骤三、计算随机共振信号的稳态跃变适配次数N;步骤四、将稳态跃变适配次数N作为检测统计量与门限TH进行比较;确定待检测信号中有、无声信标发出的高频窄脉宽信号。本发明主要用于探测声信标发出的高频窄脉宽信号。
-
公开(公告)号:CN114563760A
公开(公告)日:2022-05-31
申请号:CN202210115326.3
申请日:2022-02-07
Applicant: 哈尔滨工程大学
Abstract: 本发明提出了一种基于SCA阵型的二阶超波束形成方法、设备及介质,所述SCA阵型由三个ULA穿插组成的,首先,利用常规波束形成技术对子阵1和子阵2的接收信号进行处理;其次,利用分裂波束对子阵3的接收信号进行处理;然后,利用以上结果计算二阶“和”波束以及二阶“差”波束;将二阶“和”波束以及二阶“差”波束进行高阶差运算获得二阶超波束形成输出;通过对二阶超波束方位谱的谱峰搜索即可得到波达方向的估计值。通过仿真结果验证表明,本发明所述方法能有效锐化波束、抑制旁瓣高度,且在相干多目标条件下估计精度优于最小处理器和MUSIC。
-
公开(公告)号:CN106299518B
公开(公告)日:2018-10-26
申请号:CN201610865812.1
申请日:2016-09-29
Applicant: 哈尔滨工程大学
Abstract: 锂电池密封舱安全报警泄压装置及其方法,属于锂电池监测报警领域。现有锂电池监测报警系统无法应用在狭小的密封舱内。锂电池密封舱安全报警泄压装置,其组成包括:外壳体(1)分为左腔室(9)和右腔室(10),左腔室(9)内部的顶面安装泄压单元(7),右腔室(10)内安装信息处理单元(4),泄压主体的外壳体(1)末端连接安装接头(2),安装接头(2)末端安装信息采集单元(3);外壳体(1)外壁安装通信单元(5)、示警单元(6)。锂电池密封舱安全报警泄压装置的报警泄压方法,信息采集单元(3)采集的信息发送给信息处理单元(4),信息处理单元(4)驱动泄压单元(7)、示警单元(6)报警、通信单元(5)工作。
-
公开(公告)号:CN106299518A
公开(公告)日:2017-01-04
申请号:CN201610865812.1
申请日:2016-09-29
Applicant: 哈尔滨工程大学
CPC classification number: H01M10/488 , G08B21/16
Abstract: 锂电池密封舱安全报警泄压装置及其方法,属于锂电池监测报警领域。现有锂电池监测报警系统无法应用在狭小的密封舱内。锂电池密封舱安全报警泄压装置,其组成包括:外壳体(1)分为左腔室(9)和右腔室(10),左腔室(9)内部的顶面安装泄压单元(7),右腔室(10)内安装信息处理单元(4),泄压主体的外壳体(1)末端连接安装接头(2),安装接头(2)末端安装信息采集单元(3);外壳体(1)外壁安装通信单元(5)、示警单元(6)。锂电池密封舱安全报警泄压装置的报警泄压方法,信息采集单元(3)采集的信息发送给信息处理单元(4),信息处理单元(4)驱动泄压单元(7)、示警单元(6)报警、通信单元(5)工作。
-
公开(公告)号:CN116660875A
公开(公告)日:2023-08-29
申请号:CN202310420938.8
申请日:2023-04-19
Applicant: 哈尔滨工程大学
IPC: G01S7/52 , G06F18/213 , G06F18/10 , G01S7/537 , G01S15/88
Abstract: 非高斯噪声背景下的目标辐射线谱自适应增强方法及系统,涉及声纳探测技术领域。本发明是为了解决现有自适应线谱增强方法在非高斯背景噪声下,性能急剧下降甚至完全失效,从而导致线谱检测能力弱的问题。本发明包括:初始化自适应权值w(k);对接收的声强信息进行采样获得参考信号x(k),对x(k)进行解相关延迟,获得声强信息的延迟信号x(k‑Δ);迭代更新自适应权值,将x(k‑Δ)与更新后的自适应权值相乘,获得增强后的目标辐射线谱y(k);获得x(k)与y(k)的估计误差e(k);设计惩罚函数,利用惩罚函数和e(k),获取迭代更新后的自适应权值;重复执行以上步骤,直至迭代更新后的自适应权值收敛,输出增强后的目标辐射线谱。本发明用于自适应增强目标辐射线谱。
-
公开(公告)号:CN116256738A
公开(公告)日:2023-06-13
申请号:CN202310284226.8
申请日:2023-03-22
Applicant: 哈尔滨工程大学
IPC: G01S7/539
Abstract: 大多普勒条件下的正弦调频信号检测方法及装置,属于水声信号处理领域。解决了现有技术中检测器要求先验已知正弦调频信号的调频参数,才能对正弦调频信号进行检测的问题。本发明方法包括如下:步骤1、对接收信号进行窄带滤波;步骤2、对步骤1窄带滤波后的信号进行希尔伯特变换,估计信号的瞬时频率;步骤3、通过对步骤2计算获得的瞬时频率做差分计算,得到瞬时频率差分序列;步骤4、利用步骤3的结果进一步计算获得瞬时频率差分序列的包络的方差序列;步骤5、将步骤4中包络的方差序列作为检测统计量进行信号有无的判决。本发明主要应用在水声信号处理领域中。
-
公开(公告)号:CN107807354A
公开(公告)日:2018-03-16
申请号:CN201710896979.9
申请日:2017-09-28
Applicant: 哈尔滨工程大学
IPC: G01S7/52
CPC classification number: G01S7/52004
Abstract: 本发明提供的是一种多用途通道一致性测量系统。由采集处理单元、信号调理单元、显示控制单元、信号发生单元、供电单元、接口单元和触摸屏组成,可以同时测量40个通道的参数一致性。本发明的种多用途通道一致性测量系统,属于水声工程技术领域。可用于对水声设备中的多元接收水听器基阵各阵元、以及多通道水声接收机各通道之间的参数一致性进行测量。具备可编程生成测量信号的功能,能够实时显示测量结果,可以对待测的水声信号进行存储导出以及事后分析处理。
-
公开(公告)号:CN116256738B
公开(公告)日:2023-11-24
申请号:CN202310284226.8
申请日:2023-03-22
Applicant: 哈尔滨工程大学
IPC: G01S7/539
Abstract: 大多普勒条件下的正弦调频信号检测方法及装置,属于水声信号处理领域。解决了现有技术中检测器要求先验已知正弦调频信号的调频参数,才能对正弦调频信号进行检测的问题。本发明方法包括如下:步骤1、对接收信号进行窄带滤波;步骤2、对步骤1窄带滤波后的信号进行希尔伯特变换,估计信号的瞬时频率;步骤3、通过对步骤2计算获得的瞬时频率做差分计算,得到瞬时频率差分序列;步骤4、利用步骤3的结果进一步计算获得瞬时频率差分序列的包络的方差序列;步骤5、将步骤4中包络的方差序列作为检测统计量进行信号有无的判决。本发明主要应用在水声信号处理领域中。
-
-
-
-
-
-
-
-