-
公开(公告)号:CN117688647A
公开(公告)日:2024-03-12
申请号:CN202311730470.9
申请日:2023-12-15
Applicant: 哈尔滨工业大学重庆研究院 , 哈尔滨工业大学
IPC: G06F30/13 , G06F30/23 , G06F119/02
Abstract: 一种桥梁结构监测数据预测模型的建立方法及其应用,属于桥梁监测技术领域。为提高桥梁监测的准确性,本发明提取桥梁结构健康监测系统的监测变量,采集桥梁结构健康监测系统的监测变量对应的监测数据,得到桥梁结构健康监测系统的监测数据向量,利用桥梁结构健康监测系统的监测数据向量与上一测量时间点的监测数据向量做增量差值,计算桥梁结构健康监测系统的监测数据的增量向量,监测历史时间段内利用多个监测数据增量向量构建桥梁结构健康监测系统的监测数据的增量影响矩阵;利用桥梁结构健康监测系统的监测数据的增量影响矩阵,构建桥梁结构监测数据预测模型。本发明建立的增量影响矩阵可在索力调整优化、拉索更换、健康监测等场景中得到应用。
-
公开(公告)号:CN117553964A
公开(公告)日:2024-02-13
申请号:CN202311436773.X
申请日:2023-10-31
Applicant: 哈尔滨工业大学重庆研究院 , 哈尔滨工业大学
Abstract: 本发明涉及飞行机器人技术领域,具体是涉及一种用于桥梁检测机器人的负压监测方法、系统及存储介质。该方法包括如下步骤:使用气压传感器对吸附式飞行机器人产生的气压值进行实时监控,并收集气压变化情况;将实时采集的气压值与预设阈值进行比较;当气压值低于预设阈值一时,启动预警模块,发送可能发生脱落的警告;若气压值继续降低至低于预设阈值二,启动气压调节系统;将气压值、气压变化情况及脱落警告信息传输至用户界面。利用吸附式飞行机器人技术和气压监测系统实现高效、安全的检测;通过气压吸附机制,机器人能够稳定附着于桥梁垂直面,避免传统方法中需要进行危险的高空作业。
-
公开(公告)号:CN117382938A
公开(公告)日:2024-01-12
申请号:CN202311485410.5
申请日:2023-11-07
Applicant: 哈尔滨工业大学重庆研究院 , 哈尔滨工业大学
IPC: B64U30/29 , B64U10/70 , B60F5/02 , B62D57/024
Abstract: 本发明涉及无人飞行器技术领域,具体是涉及一种负压、推力两用螺旋桨结构。包括螺旋桨的轴芯,用于安装在可吸附垂直壁面的飞行机器人使用的螺旋桨在轴芯外壁布设有两个大半径桨叶和数个第一小半径桨叶,其中,所述两个大半径桨叶沿轴芯呈180度对称设置。通过增加数个第一小半径桨叶来优化设计,相比传统螺旋桨,在负压吸附和飞行状态下,该设计改善气流分布,消除轴芯附近的气流速度低下问题;增强抽风效果,特别是在半密闭负压腔内,实现更好的空气循环。
-
公开(公告)号:CN117230736A
公开(公告)日:2023-12-15
申请号:CN202311318139.6
申请日:2023-10-12
Applicant: 哈尔滨工业大学重庆研究院 , 哈尔滨工业大学
IPC: E01D22/00 , E01D19/00 , E01D4/00 , E01D101/26
Abstract: 一种中小跨径拱桥的装配式加固装置及方法,属于中小跨径拱桥加固技术领域。其包括预制标准块、植筋、千斤顶和纵向钢筋,多个预制标准块沿原桥拱圈的弧形底面并排设置,且设置有多列,靠近中心位置的两个预制标准块通过千斤顶连接,每前后相邻两个预制标准块之间通过凸榫和凸榫凹槽建立卡装连接,预制标准块的中心处安装有植筋,植筋与原桥拱圈固定连接,纵向钢筋贯穿连接每排预制标准块。解决便于工业标准化生产,节省支架、现浇模板工程量,保证构件质量,提高新增套拱与原拱圈的变形协调性的问题,便于工业化、标准化生产,节省支架、现浇模板工程量,保证新增套拱强度的同时,提高新增套拱与原拱圈的变形协调性。
-
公开(公告)号:CN116654311A
公开(公告)日:2023-08-29
申请号:CN202310728587.7
申请日:2023-06-19
Applicant: 哈尔滨工业大学重庆研究院 , 哈尔滨工业大学
Abstract: 本发明涉及无人机技术领域,尤其涉及一种用于封闭复杂环境的无人机及其使用方法,控制器和中继装置设置在主平台上,控制器用于控制动力装置的动作,中继装置用于发送和接收信号;动力装置设置在附平台上,动力装置用于对无人机提供动力;笼式保护罩设置在机架外,并与支架连接;摄像头设置在笼式保护罩内,摄像头用于采集图像信息。通过笼式保护罩对无人机内部进行保护,使无人机具有更好的抗变形能力,受到撞击时笼式保护罩能有效减少无人机所受的损害,同时通过中继装置进行无人机的信号收发,便于多台无人机之间的组网,将数据从任意一个无人机传输到另外一个无人机,确保了图传和控制信号的稳定传输,提高了在封闭复杂环境的作业范围。
-
公开(公告)号:CN117566136A
公开(公告)日:2024-02-20
申请号:CN202311482421.8
申请日:2023-11-07
Applicant: 哈尔滨工业大学重庆研究院 , 哈尔滨工业大学
IPC: B64U10/70 , B64U10/14 , B64U50/19 , B60F5/02 , B62D57/024
Abstract: 本发明涉及飞行器技术领域,具体是涉及一种可倾转贴壁飞行器及辅助结构。包括机身,所述机身上开设有多个气流通道,所述气流通道上设桨叶和与所述桨叶连接的动力部件,所述动力部件用于驱动所述桨叶正反转以改变机身上下方气流通过所述气流通道的流向;所述机身上表面设置有多个上支撑脚架,所述上支撑架上设置有脚轮;所述机身的上表面一侧还设置有安装座,所述安装座上设置有辅助结构,以作为飞行器旋转的着力旋转部位。通过设有辅助结构和上支撑脚架。借助辅助结构和电机差速实现旋转和状态切换。在贴壁状态下,飞行器有稳定的着力处,受风力影响小,也不易与壁面再发生破坏性碰撞。可以实现稳定、长时间的定点监视等任务。
-
公开(公告)号:CN117389316A
公开(公告)日:2024-01-12
申请号:CN202311438294.1
申请日:2023-10-31
Applicant: 哈尔滨工业大学重庆研究院 , 哈尔滨工业大学
IPC: G05D1/49 , G05D1/46 , G05D101/10 , G05D109/20
Abstract: 本发明涉及飞行机器人技术领域,具体是涉及一种吸附式飞行机器人侧翻吸附、脱落控制方法及系统。该方法利用第一激光雷达获取飞行机器人与壁面的距离,并计算期望水平速度。通过控制电机转速,使机器人接近并接触壁面。使用第一和第二激光雷达测量距离,计算壁面倾斜角度和机体期望旋转角速度。将期望旋转角速度转化为控制角速度,并调整电机转速,实现机体的侧翻和吸附在壁面上。电机产生扭矩使机体绕侧面旋转。当陀螺仪检测到机体倾斜角恢复至预定角度时,操作飞控调整电机转速,完成稳定悬停,实现吸附与悬停的状态切换。这种方法拓展了飞行机器人在复杂环境中进行壁面操作的能力,增加了其应用领域和功能范围。
-
公开(公告)号:CN115402438A
公开(公告)日:2022-11-29
申请号:CN202211123496.2
申请日:2022-09-15
Applicant: 哈尔滨工业大学重庆研究院 , 哈尔滨工业大学
IPC: B62D57/024 , B60F5/02 , B64C27/20 , G05B13/04
Abstract: 本发明涉及一种自调控吸附式飞行机器人及其吸附方法,飞行吸附动力装置在控制装置的控制作用下,将进风口的风快速抽取至负压腔底部的出风口,出风口的风反向给予负压腔体推力,提供上升飞行动力,进风口的风被快速抽取流动形成负压腔吸附面的负压,满足机器人负压吸附在所需作业物体的表面,实现机器人在所需作业表面近距离地接触执行相关任务。同时吸附式飞行机器人吸附之后,通过气压检测装置实时检测负压腔体的负压腔内气压并将气压数据传递给控制装置,控制装置通过PID控制算法实时调整各个飞行吸附动力装置的动力以维持负压腔吸附面的负压,保持机器人持续的吸附能力,保持机器人原有的姿态不变,确保机器人照常稳定吸附在所需作业的平面。
-
公开(公告)号:CN119687745A
公开(公告)日:2025-03-25
申请号:CN202510011023.0
申请日:2025-01-03
Applicant: 中铁十二局集团第二工程有限公司 , 哈尔滨工业大学重庆研究院 , 哈尔滨工业大学
Abstract: 本发明公开了一种大坡度红层软岩斜井深孔光面爆破法开挖优化施工方法,所述方法包括如下步骤:步骤S1:根据隧道围岩地质条件,确定光面爆破参数;步骤S2:根据步骤S1计算及选取的参数进行光面爆破的炮孔设计;步骤S3:光面爆破的施工;步骤S34:开挖爆破区岩渣。该方法对大坡度有轨长斜井红层软岩隧道的光面爆破参数及施工技术进行优化,采用台阶法优化施工方法减小隧道爆破开挖进尺的难度,采用优化的平行空孔直线桶形掏槽方式制造出较好的临空面,达到利于隧道开挖进尺,较好控制斜井超欠挖的施工效果。该施工方法操作方便、易于施工,具有广阔的应用前景。
-
公开(公告)号:CN117570980A
公开(公告)日:2024-02-20
申请号:CN202311438286.7
申请日:2023-10-31
Applicant: 哈尔滨工业大学重庆研究院 , 哈尔滨工业大学
Abstract: 本发明属于无人机定位技术领域,具体是涉及一种基于UWB与GPS融合定位算法的方法及系统。该方法包括:收集来自UWB和GPS设备的原始数据;分别处理UWB和GPS设备的原始数据,得到UWB和GPS处理后的定位数据,其中的处理UWB设备的原始数据包括:通过多普勒效应和距离测量计算飞行器相对于UWB基站的位置,其中的处理GPS设备的原始数据包括:获取GPS信号,计算飞行器的地理位置坐标;将UWB和GPS处理后的定位数据进行融合;根据融合后的定位数据,进行实时优化和校准;根据优化和校准后的定位数据预测飞行器可能的移动路径,并进行路径规划和轨迹跟踪。通过融合UWB和GPS定位技术,本方案能够实现高精度的定位,满足飞行器应用领域对精确定位的需求。
-
-
-
-
-
-
-
-
-