-
公开(公告)号:CN117955745B
公开(公告)日:2024-07-02
申请号:CN202410347079.9
申请日:2024-03-26
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , G06F18/214 , G06F18/213 , G06F18/2132 , G06F18/2135 , G06F18/23213 , G06F18/25
Abstract: 本发明涉及网络安全领域及计算机深度学习领域,特别涉及一种融合网络流量特征和威胁情报的网络攻击同源性分析方法。其包括步骤:S1.构建网络流量特征;S2.构建威胁情报特征;S3.使用聚类进行网络攻击同源性分析。本方法分析的网络攻击是单步攻击,采用设备捕获的网络流量数据和开源威胁情报进行网络攻击同源性分析,相比现有方法,本发明使用的特征较为全面,更能表征网络攻击的特点。结合网络攻击的有效载荷特征、网络攻击的通信行为特征以及威胁情报特征,更能全面的表示一个网络攻击,有利于后续的同源性分析。
-
公开(公告)号:CN116923581A
公开(公告)日:2023-10-24
申请号:CN202310832509.1
申请日:2023-07-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: B62D57/024 , B62D57/032 , B60R11/04
Abstract: 本发明涉及检测机器人技术领域,尤其涉及一种用于风电叶片检测的爬壁机器人,包括机身和调节机身攀爬位置的多条机械腿;其中在所述机身上设置有图像采集部、控制器、以及电源;其中所述机械腿上设置有多个调节控制行走的舵机,其中在所述机械腿的下端设置有吸附部。本申请中利用该爬壁机器人对叶片表面进行检查维护,可以有效保障人的生命安全,并缩短了检修时间;同时,采用较为小巧的六足爬壁机器人结构,并搭载能更好地适应风电叶片曲面的真空吸盘,从而提高了爬壁机器人的吸附稳定性,降低了制造大型检测设备的难度与成本,具有较高的经济性。
-
公开(公告)号:CN117792803A
公开(公告)日:2024-03-29
申请号:CN202410218653.0
申请日:2024-02-28
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , G06F18/2415 , G06F18/2433 , G06F18/214 , G06F16/35 , G06F40/284 , G06N3/0455 , G06N3/088 , G06N3/09
Abstract: 本发明提供了一种基于数据包有效载荷预训练模型的网络攻击检测方法、系统及介质,该方法包括:对数据集中的网络流量包进行切分,获得网络会话流粒度的网络数据包有效载荷序列;对数据集的正常流量和网络攻击流量进行均衡采样,使用滑动窗口对有效载荷进行切分;将有效载荷切分后获得的字节对序列经分词器处理后输入Bert模型进行预训练,在预训练Bert模型时将网络会话流类比于文档,将网络数据包有效载荷类比于句子:加载已预训练的Bert模型,结合分类器在新的数据上进行微调,采用微调后的网络攻击检测模型检测网络攻击。本发明能更好地捕获网络数据包有效载荷的信息,以便于通过网络数据包有效载荷预训练模型检测网络攻击。
-
公开(公告)号:CN117955745A
公开(公告)日:2024-04-30
申请号:CN202410347079.9
申请日:2024-03-26
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , G06F18/214 , G06F18/213 , G06F18/2132 , G06F18/2135 , G06F18/23213 , G06F18/25
Abstract: 本发明涉及网络安全领域及计算机深度学习领域,特别涉及一种融合网络流量特征和威胁情报的网络攻击同源性分析方法。其包括步骤:S1.构建网络流量特征;S2.构建威胁情报特征;S3.使用聚类进行网络攻击同源性分析。本方法分析的网络攻击是单步攻击,采用设备捕获的网络流量数据和开源威胁情报进行网络攻击同源性分析,相比现有方法,本发明使用的特征较为全面,更能表征网络攻击的特点。结合网络攻击的有效载荷特征、网络攻击的通信行为特征以及威胁情报特征,更能全面的表示一个网络攻击,有利于后续的同源性分析。
-
公开(公告)号:CN118013046B
公开(公告)日:2024-07-16
申请号:CN202410389726.2
申请日:2024-04-02
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/35 , G06F40/295 , G06N5/025 , G06N3/0442 , G06N3/0455 , G06F18/241
Abstract: 本发明提供了一种基于大语言模型的非结构化网络威胁情报抽取方法、系统及介质,该方法包括:利用爬虫技术从开源情报平台实时获取非结构化威胁情报数据;利用数据清洗技术剔除非结构化威胁情报数据中非主要文本内容,得到非结构化的文本情报数据,完成数据初步清洗;利用大语言模型结合Prompt设计实现对非结构化的文本情报数据进行二次处理以及知识提取;利用深度学习模型对经由大语言模型处理的结果进行二次知识抽取;结合两次知识抽取内容进一步删选,得到最终抽取结果。本发明提高了网络威胁情报的准确性和及时性,提高了对复杂多变的网络威胁的识别和分析能力,能够更好地适应特定领域的需求。
-
公开(公告)号:CN117792803B
公开(公告)日:2024-06-25
申请号:CN202410218653.0
申请日:2024-02-28
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40 , G06F18/2415 , G06F18/2433 , G06F18/214 , G06F16/35 , G06F40/284 , G06N3/0455 , G06N3/088 , G06N3/09
Abstract: 本发明提供了一种基于数据包有效载荷预训练模型的网络攻击检测方法、系统及介质,该方法包括:对数据集中的网络流量包进行切分,获得网络会话流粒度的网络数据包有效载荷序列;对数据集的正常流量和网络攻击流量进行均衡采样,使用滑动窗口对有效载荷进行切分;将有效载荷切分后获得的字节对序列经分词器处理后输入Bert模型进行预训练,在预训练Bert模型时将网络会话流类比于文档,将网络数据包有效载荷类比于句子:加载已预训练的Bert模型,结合分类器在新的数据上进行微调,采用微调后的网络攻击检测模型检测网络攻击。本发明能更好地捕获网络数据包有效载荷的信息,以便于通过网络数据包有效载荷预训练模型检测网络攻击。
-
公开(公告)号:CN220332818U
公开(公告)日:2024-01-12
申请号:CN202321782176.8
申请日:2023-07-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: B62D57/024 , B62D57/032 , B60R11/04
Abstract: 本实用新型涉及检测机器人技术领域,尤其涉及一种用于风电叶片检测的爬壁机器人,包括机身和调节机身攀爬位置的多条机械腿;其中在所述机身上设置有图像采集部、控制器、以及电源;其中所述机械腿上设置有多个调节控制行走的舵机,其中在所述机械腿的下端设置有吸附部。本申请中利用该爬壁机器人对叶片表面进行检查维护,可以有效保障人的生命安全,并缩短了检修时间;同时,采用较为小巧的六足爬壁机器人结构,并搭载能更好地适应风电叶片曲面的真空吸盘,从而提高了爬壁机器人的吸附稳定性,降低了制造大型检测设备的难度与成本,具有较高的经济性。
-
-
-
-
-
-