一种弓形虫高倍显微图像生成方法及系统

    公开(公告)号:CN110415194A

    公开(公告)日:2019-11-05

    申请号:CN201910725715.6

    申请日:2019-08-07

    Inventor: 张阳 李森 苗乔伟

    Abstract: 本发明公开一种弓形虫高倍显微图像生成方法及系统,方法包括:通过VGG网络提取低倍数显微图像的第一鉴别特征信息;将低倍数显微图像的鉴别特征信息作为输入采用循环对抗生成网络Cycle GAN生成对应的高倍数显微图像;通过VGG网络提取高倍数显微图像中的第二鉴别特征信息;基于第一鉴别特征信息和所述第二鉴别特征信息计算二者的欧氏距离;基于欧式距离对所述Cycle GAN进行训练,得到训练后的Cycle GAN;采用训练后的Cycle GAN将所述低倍数显微图像转换为高倍数显微图像。本发明中的上述方法利用低倍图像对高倍图像进行自动生成,同时在生成过程中能够保留自身鉴别信息,最大程度上重建低倍镜下的弓形虫细节,并应用于弓形虫体外观察和诊断。

    一种弓形虫高倍显微图像生成方法及系统

    公开(公告)号:CN110415194B

    公开(公告)日:2022-07-05

    申请号:CN201910725715.6

    申请日:2019-08-07

    Inventor: 张阳 李森 苗乔伟

    Abstract: 本发明公开一种弓形虫高倍显微图像生成方法及系统,方法包括:通过VGG网络提取低倍数显微图像的第一鉴别特征信息;将低倍数显微图像的鉴别特征信息作为输入采用循环对抗生成网络Cycle GAN生成对应的高倍数显微图像;通过VGG网络提取高倍数显微图像中的第二鉴别特征信息;基于第一鉴别特征信息和所述第二鉴别特征信息计算二者的欧氏距离;基于欧式距离对所述Cycle GAN进行训练,得到训练后的Cycle GAN;采用训练后的Cycle GAN将所述低倍数显微图像转换为高倍数显微图像。本发明中的上述方法利用低倍图像对高倍图像进行自动生成,同时在生成过程中能够保留自身鉴别信息,最大程度上重建低倍镜下的弓形虫细节,并应用于弓形虫体外观察和诊断。

Patent Agency Ranking