基于半递归特征金字塔结构的图像检测方法及存储介质

    公开(公告)号:CN116486230B

    公开(公告)日:2024-02-02

    申请号:CN202310433523.4

    申请日:2023-04-21

    Abstract: 本申请实施例公开了一种基于半递归特征金字塔结构的图像检测方法及存储介质,涉及深度学习图像检测技术领域,其中方法包括:通过图像采集设备获取实时图像;将实时图像输入到半递归特征金字塔的低语义层生成第一次低语义特征;将第一次低语义特征进行反馈特征选取操作,生成反馈特征;将反馈特征和实时图像再次输入到低语义层进行递归计算得到第二次低语义特征;将第一次低语义特征和第二次低语义特征分别输入到半递归特征金字塔的高语义层进行下采样,得到两次高语义特征;将第一次低语义、第二次低语义特征和两次高语义特征分别进行对应层的融合,生成用于预测的特征,利用自适应检测头进行多级预测,得到预测结果并进

    一种基于多头自注意力机制的多任务篇章级事件抽取方法

    公开(公告)号:CN113761936A

    公开(公告)日:2021-12-07

    申请号:CN202110953670.5

    申请日:2021-08-19

    Abstract: 本发明提供一种基于多头自注意力机制的多任务篇章级事件抽取方法,包括如下步骤:将单一句子级事件抽取转换为打包句子集合的篇章级事件抽取;利用预训练的语言模型BERT模型进行词嵌入表示;对单句中所有单词嵌入和位置嵌入作为输入,利用卷积神经网络模型进行编码,结合分段最大池策略捕获句子内部的最有价值的特征;利用多头自注意力模型,获得融合全文语义信息的篇章表示和注意力权重;利用分类器得到预测的事件类型;利用事件类型作为先验信息,链接到事件元素提取的输入序列中,利用预训练模型结合机器阅读理解方法提取序列中所有相关元素。本发明可用于篇章级事件抽取任务,实现了将序列标注问题转换为机器阅读理解问题的突破。

    一种基于多模态图卷积的影像推荐系统及方法

    公开(公告)号:CN116932887A

    公开(公告)日:2023-10-24

    申请号:CN202310669701.3

    申请日:2023-06-07

    Abstract: 本发明所述一种基于多模态图卷积的影像推荐系统及方法,属于计算机技术领域。本发明综合利用图卷积对多模态特征聚合的方法,基于图卷积架构针对用户偏好实现影视作品的推荐。本方法首先通过爬虫算法,获取同一个用户对影视作品的评价记录、影视作品相关海报等信息;对数据集进行预处理,使用MixGen方法对数据进行增强,对数据集进行扩充;使用线性变换等方法将图像数据模态和文本数据模态表示为向量形式;对不同模态的信息进行提取,分别获取多模态中文本模态和图像数据模态的向量表示;利用图卷积对同一个模态进行层内和层间节点聚合,提取用户对电影的细粒度意图;利用层间聚合建立细粒度和粗粒度用户意图之间的关系,对不同模态的处理都建立超级节点结合;将聚合得到各模态的特征通过一个注意力机制层,增强不同模态之间的交互,最终获取影视作品推荐列表。本发明解决了现有的多模态推荐系统难以很好的在特定模式下对用户偏好建模以及不同模态数据难以进行交互的问题。

    基于半递归特征金字塔结构的图像检测方法及存储介质

    公开(公告)号:CN116486230A

    公开(公告)日:2023-07-25

    申请号:CN202310433523.4

    申请日:2023-04-21

    Abstract: 本申请实施例公开了一种基于半递归特征金字塔结构的图像检测方法及存储介质,涉及深度学习图像检测技术领域,其中方法包括:通过图像采集设备获取实时图像;将实时图像输入到半递归特征金字塔的低语义层生成第一次低语义特征;将第一次低语义特征进行反馈特征选取操作,生成反馈特征;将反馈特征和实时图像再次输入到低语义层进行递归计算得到第二次低语义特征;将第一次低语义特征和第二次低语义特征分别输入到半递归特征金字塔的高语义层进行下采样,得到两次高语义特征;将第一次低语义、第二次低语义特征和两次高语义特征分别进行对应层的融合,生成用于预测的特征,利用自适应检测头进行多级预测,得到预测结果并进行可视化展示。

    一种基于多头自注意力机制的多任务篇章级事件抽取方法

    公开(公告)号:CN113761936B

    公开(公告)日:2023-04-07

    申请号:CN202110953670.5

    申请日:2021-08-19

    Abstract: 本发明提供一种基于多头自注意力机制的多任务篇章级事件抽取方法,包括如下步骤:将单一句子级事件抽取转换为打包句子集合的篇章级事件抽取;利用预训练的语言模型BERT模型进行词嵌入表示;对单句中所有单词嵌入和位置嵌入作为输入,利用卷积神经网络模型进行编码,结合分段最大池策略捕获句子内部的最有价值的特征;利用多头自注意力模型,获得融合全文语义信息的篇章表示和注意力权重;利用分类器得到预测的事件类型;利用事件类型作为先验信息,链接到事件元素提取的输入序列中,利用预训练模型结合机器阅读理解方法提取序列中所有相关元素。本发明可用于篇章级事件抽取任务,实现了将序列标注问题转换为机器阅读理解问题的突破。

    基于傅里叶变换的拉曼光谱曲线数据增强方法

    公开(公告)号:CN115508335A

    公开(公告)日:2022-12-23

    申请号:CN202211290178.5

    申请日:2022-10-21

    Abstract: 本方案涉及一种基于傅里叶变换的拉曼光谱曲线数据增强方法。所述方法包括:获取待处理拉曼光谱曲线进行快速傅里叶变换得到拉曼光谱曲线频域图;将拉曼光谱曲线频域图中的两端极端频率曲线峰屏蔽,得到目标拉曼光谱曲线频域图;确定频域掩模起始位置与宽度并执行频域屏蔽操作,判断对目标拉曼光谱曲线频域图的频域屏蔽操作是否合法;若合法,则对目标拉曼光谱曲线频域图进行逆傅里叶变换,得到数据增强的拉曼光谱曲线。通过利用快速傅里叶变换获得的拉曼光谱曲线对应的频域图进行屏蔽操作,可以保留原有拉曼光谱曲线数据的基本框架,在部分频率点进行轻微扰动,以达到合理数据扩充的目的,可以提升机器学习模型分类效果。

    基于傅里叶变换的拉曼光谱曲线数据增强方法

    公开(公告)号:CN115508335B

    公开(公告)日:2024-08-13

    申请号:CN202211290178.5

    申请日:2022-10-21

    Abstract: 本方案涉及一种基于傅里叶变换的拉曼光谱曲线数据增强方法。所述方法包括:获取待处理拉曼光谱曲线进行快速傅里叶变换得到拉曼光谱曲线频域图;将拉曼光谱曲线频域图中的两端极端频率曲线峰屏蔽,得到目标拉曼光谱曲线频域图;确定频域掩模起始位置与宽度并执行频域屏蔽操作,判断对目标拉曼光谱曲线频域图的频域屏蔽操作是否合法;若合法,则对目标拉曼光谱曲线频域图进行逆傅里叶变换,得到数据增强的拉曼光谱曲线。通过利用快速傅里叶变换获得的拉曼光谱曲线对应的频域图进行屏蔽操作,可以保留原有拉曼光谱曲线数据的基本框架,在部分频率点进行轻微扰动,以达到合理数据扩充的目的,可以提升机器学习模型分类效果。

    一种基于多模态图卷积的影像推荐系统及方法

    公开(公告)号:CN116932887B

    公开(公告)日:2024-06-18

    申请号:CN202310669701.3

    申请日:2023-06-07

    Abstract: 本发明所述一种基于多模态图卷积的影像推荐系统及方法,属于计算机技术领域。本发明综合利用图卷积对多模态特征聚合的方法,基于图卷积架构针对用户偏好实现影视作品的推荐。本方法首先通过爬虫算法,获取同一个用户对影视作品的评价记录、影视作品相关海报等信息;对数据集进行预处理,使用MixGen方法对数据进行增强,对数据集进行扩充;使用线性变换等方法将图像数据模态和文本数据模态表示为向量形式;对不同模态的信息进行提取,分别获取多模态中文本模态和图像数据模态的向量表示;利用图卷积对同一个模态进行层内和层间节点聚合,提取用户对电影的细粒度意图;利用层间聚合建立细粒度和粗粒度用户意图之间的关系,对不同模态的处理都建立超级节点结合;将聚合得到各模态的特征通过一个注意力机制层,增强不同模态之间的交互,最终获取影视作品推荐列表。本发明解决了现有的多模态推荐系统难以很好的在特定模式下对用户偏好建模以及不同模态数据难以进行交互的问题。

    一种基于潜在扩散模型和多级上下文交叉一致性的半监督分割方法

    公开(公告)号:CN116958554A

    公开(公告)日:2023-10-27

    申请号:CN202310959223.X

    申请日:2023-08-01

    Abstract: 本发明公开一种基于潜在扩散模型和多级上下文交叉一致性的半监督分割方法,该方法包括两个阶段,图像生成阶段和半监督学习阶段。在图像生成阶段包括如下步骤:首先将图像输入到变分自动编码器的编码器中生成潜在空间编码,将对应图像的潜在空间编码输入到潜在扩散模型中,其次利用去噪自动编码器对加噪后的潜在空间编码计算去噪拟合损失以学习去噪分布,最后利用潜在扩散模型随机生成高斯噪声并进行去噪估计以生成潜在空间编码,将潜在空间编码通过变分自动解码器生成像素级图像。为了利用图像生成阶段生成的大量有价值合成无标记样本,半监督学习阶段包括如下步骤:首先将有标记图像和无标记合成图像样本输入到编码器以提取高级语义特征,其次引入多个辅助解码器,对辅助解码器和主解码器的输入特征提取不同等级的全局上下文信息,并对辅助解码器的输入特征额外施加噪声扰动,最后通过保持主解码器和辅助解码器之间输出结果的一致性来学习生成的未标记样本。发明可以用于任何利用合成图像进行半监督学习的任务。

    一种可持续学习的智能客服回访系统

    公开(公告)号:CN118411990A

    公开(公告)日:2024-07-30

    申请号:CN202311304628.6

    申请日:2023-10-09

    Inventor: 赵胜 张立斌 丁卓

    Abstract: 本发明公开了一种基于可持续学习的智能客服回访系统及方法,属于人工智能和客服领域。本发明通过构建专家系统、知识库、语音交互和自然语言处理模块,实现智能、自动化并可持续学习的客户回访和服务。本发明通过语音识别模块,实现语音信号到文本的转换,文本再通过语音合成模块转换为语音信号输出;这两者构成了完整的语音交互链路。接着,基于词向量和文本编码算法,将文本数据映射为数值向量表示,图像数据也通过卷积神经网络获得向量表示,完成多模态数据的向量化。在获得向量化表示的数据基础上,本发明构建了专家系统模块,运用基于知识图谱的问答匹配技术,准确解析用户需求及意图,实现对自然语言的深入理解。同时,依托预先构建的知识库,提供问答型对话服务。而对于无法匹配的问题,本发明使用基于Seq2Seq框架的聊天机器人技术实现流畅的开放域对话。此外,本发明还会分析用户对对话服务的反馈,持续更新完善知识库,实现系统能力的可持续进化。

Patent Agency Ranking