一种均匀加热结构及其制造方法
    4.
    发明公开

    公开(公告)号:CN119767454A

    公开(公告)日:2025-04-04

    申请号:CN202510122175.8

    申请日:2025-01-26

    Abstract: 本发明公开了一种均匀加热结构及其制造方法,属于电热领域。该结构主要包括如下部分:支撑结构、均温层、发热层、电极、绝缘层、导热界面层、紧固结构、保温结构。首先,通过导热界面层,将支撑结构、均温层、绝缘层、发热层结合到一起,再通过压合、焊接等方法安装电极,并使用机械结构对装置进行紧固,然后在紧固结构外侧包覆保温结构,最后将电源线与电极连接并使用绝缘材料进行机械固定,得到均匀电热结构。本方法制备的结构采用均匀导电薄膜作为发热元件,同时铺设均温层,整体温度更加均匀。同时,本结构还大量使用导热界面层,因此热阻更小、能效更高。本结构还具有升温快、可靠性高等优点。

    一种三维毛线团状钛酸钾表面增强拉曼散射基底材料的制备方法

    公开(公告)号:CN113777092B

    公开(公告)日:2023-06-30

    申请号:CN202111074349.6

    申请日:2021-09-14

    Abstract: 一种三维毛线团状钛酸钾表面增强拉曼散射基底材料的制备方法,它属于表面增强拉曼散射基底材料的制备技术领域。它要解决现有制备K2Ti8O17的方法存在高温操作和使用危险试剂的问题。方法:一、制备Ti2AlN分散悬液;二、Ti2AlN分散悬液在120~200℃下反应,经冷却洗涤后烘干,即完成。本发明所得三维毛线团状K2Ti8O17材料形貌规则,具有多孔的三维结构,没有杂质,结构可控,具备很好的表面增强拉曼散射性能,可用于痕量检测等领域。本发明避免了能源的大量消耗,操作简单、结果重复性好,成本低廉,易于实现工业化生产。本发明中三维毛线团状K2Ti8O17表面增强拉曼散射基底材料作为非金属纳米材料使用。

    一种石墨纳米片基复合膜驱动器、制备方法及其应用

    公开(公告)号:CN114591526A

    公开(公告)日:2022-06-07

    申请号:CN202210033619.7

    申请日:2022-01-12

    Abstract: 本发明公开了一种石墨纳米片基复合膜驱动器、制备方法及其应用。所述复合膜驱动器是以高分子材料为基片,在基片两侧涂有由干燥形成的石墨纳米片膜层;所述复合膜通过交错排布在基片两侧,具有高柔性和低电阻率的特点,并可由通电、光照或温度变化驱动变形。本发明还公开了该驱动器的制备方法及应用,该制备方法的优点是流程简单可靠、操作性强、适应性广,可广泛应用于石墨纳米片与众多体系的混合制备中。本发明提供的制备方法使用介质成膜,成本低、污染小、有效节约资源。本发明提供的方法所制备的石墨纳米片基复合膜驱动器可广泛应用于微型机器人、机械手、人工肌肉、人工关节、智能驱动等领域。

    一种氮化钛纳米片吸波材料的制备方法

    公开(公告)号:CN113735073A

    公开(公告)日:2021-12-03

    申请号:CN202111116674.4

    申请日:2021-09-23

    Abstract: 一种氮化钛纳米片吸波材料的制备方法,它属于吸波材料技术领域。它要解决现有制备氮化钛吸波材料的方法存在过程复杂和成本高的问题。方法:一、制备氢氧化钠水溶液;二、氢氧化钠水溶液转移到反应釜中,加入氮化钛进行反应,所得产物洗涤后干燥,获得氮化钛纳米片吸波材料。本发明成功制备了氮化钛纳米片吸波材料,制备过程绿色、简单,价格低廉,适合大规模量产,所得氮化钛纳米材料具有良好吸波特性,在4.32GHz和6mm涂层厚度下,反射损耗值可达‑15.74dB,实现了1.04GHz(4~5.04GHz)的电磁波有效吸收。本发明制备的氮化钛纳米片,它作为吸波材料使用。

    一种多孔弹性导电复合薄膜及其制备方法

    公开(公告)号:CN113651994A

    公开(公告)日:2021-11-16

    申请号:CN202110909949.3

    申请日:2021-08-09

    Abstract: 本发明提供了一种多孔弹性导电复合薄膜及其制备方法,所述复合薄膜是以导电纳米材料为填料,水性高分子为基体,通过机械发泡、涂膜、干燥等工艺形成多孔弹性导电复合薄膜。使用机械发泡代替有机分相法发泡,可有效的避免使用有机溶剂,减少污染。本发明提供的方法具有方法简单、可靠、操作性强的特点,有效的避免使用有机溶剂,减少污染。本发明提供的方法可应用于众多功能纳米材料与水性高分子多孔复合材料的制备。本发明提供的方法所制备的薄膜具有多孔、导电好、能压缩回弹、压缩率大、厚度可控的特点。本发明提供的方法所制备的多孔弹性导电复合薄膜可广泛应用于电磁屏蔽、柔性传感和柔性发热等领域。

Patent Agency Ranking