一种基于Labview的熔石英元件表面微缺陷光致荧光检测集成控制系统及方法

    公开(公告)号:CN116952978A

    公开(公告)日:2023-10-27

    申请号:CN202310977239.3

    申请日:2023-08-04

    Abstract: 本发明一种基于Labview的熔石英元件表面微缺陷光致荧光检测集成控制系统及方法,涉及光学元件技术领域,为解决现有的光致荧光检测系统操作时需要分别顺序控制激光器、光谱仪和三维电动平台等硬件设施,操作繁琐、效率低及稳定性差的问题。所述系统采用Labview进行开发,包括:激光器控制模块,用于激光器的控制及参数的实时显示;运动控制模块,用于电动平台使能的控制,元件运动的控制,并对元件位置的实时显示;数据采集子模块,用于对稳态荧光光谱数据的采集;数据处理子模块,用于对数据的荧光强度信息的提取;数据存储子模块,用于对最终的荧光强度矩阵文件的存储与提取;实时成像显示模块,用于稳态荧光光谱及探测区域的实时成像显示。

    一种确定KDP晶体表面缺陷全塑性域微铣削修复工艺参数的方法

    公开(公告)号:CN116408482A

    公开(公告)日:2023-07-11

    申请号:CN202310616295.4

    申请日:2023-05-29

    Abstract: 本发明一种确定KDP晶体表面缺陷全塑性域微铣削修复工艺参数的方法,涉及光学元件加工领域,为解决现有方法未建立多种铣削方式下的最大未变形切削厚度模型,且并未考虑表面缺陷对未变形切削厚度的影响的问题。包括如下步骤:步骤一、测量KDP晶体表面缺陷的深度;步骤二、选择球头微铣削修复工艺参数;步骤三、分别构建正铣、负铣,顺铣和逆铣四种铣削模式下的最大未变形切削厚度模型并计算;步骤四、调整修复工艺参数,至各个铣削方式的最大未变形铣削厚度均小于脆塑转变临界切削深度;步骤五、确定表面缺陷全塑性域修复工艺参数。本发明以最大未变形切削厚度模型分析结果为基础对KDP晶体全塑性域微铣削修复工艺参数进行确定,可提高修复表面质量。

    一种基于CO2激光的烧蚀快速去除和熔融抛光组合的熔石英微透镜阵列制备装置及制备方法

    公开(公告)号:CN117182322A

    公开(公告)日:2023-12-08

    申请号:CN202310945069.0

    申请日:2023-07-28

    Abstract: 本发明提供一种基于CO2激光的烧蚀快速去除和熔融抛光组合的熔石英微透镜阵列制备装置及制备方法,属于光化学加工领域。为解决针对熔石英类硬脆材料加工微透镜阵列时存在成本高、热稳定性差且加工精度不易控制,难以获得低成本、高质量微透镜阵列的问题。建立热力学和流体力学的耦合模型,对粗加工结构进行仿真进而确定粗加工参数,通过路径规划获得最佳扫描轨迹,采用高功率密度CO2激光烧蚀去除熔石英,实现微结构的快速成形;采用低功率密度CO2激光辐照微结构,实现其精密熔融抛光。通过使用一套CO2激光器加工微透镜阵列,降低了加工成本,避免了重复安装定位工件的问题,进一步提高加工效率,实现高效低成本制备高质量微透镜阵列。

    一种表征KDP晶体表面缺陷微铣削修复过程切削模式的方法

    公开(公告)号:CN116882073A

    公开(公告)日:2023-10-13

    申请号:CN202310611461.1

    申请日:2023-05-29

    Abstract: 本发明一种表征KDP晶体表面缺陷微铣削修复过程切削模式的方法,涉及光学元件加工技术领域,为解决现有方法将工件材料的表面假设为无缺陷表面,尚未建立考虑微缺陷存在的球头微铣削切削比能三维模型的问题。包括如下步骤:步骤一、选择修复工艺参数,测量晶体表面缺陷深度;步骤二、建立球头微铣削平均切削面积的三维计算模型;步骤三、采集表面缺陷微铣削修复过程中切削力;步骤四、构建球头微铣削修复过程的切削比能模型;步骤五、基于所述切削比能模型,分析微铣削修复过程中的切削模式。本发明为实际修复过程中表面质量的改善、尺寸效应的控制及工艺参数的优选提供参考,以进一步提高KDP晶体元件的修复表面质量。

    一种光学元件全口径表面微缺陷光致荧光检测用自动对焦检测方法

    公开(公告)号:CN116754565A

    公开(公告)日:2023-09-15

    申请号:CN202310977429.5

    申请日:2023-08-04

    Abstract: 本发明一种光学元件全口径表面微缺陷光致荧光检测用自动对焦检测方法,涉及光学元件技术领域,为解决现有的对焦检测方法,需要手动对焦及检测,效率低,且无法保证检测结果的准确性和一致性的问题。包括如下步骤:一、安装物镜与待测光学元件;二、确定待检测区域内多个标定检测点坐标,构建检测物镜焦平面方程,制定检测扫描路径;三、控制元件沿检测扫描路径移动进行检测,判断待测点是否处于物镜焦平面,若是,则在该点进行扫描检测,若不是,则计算补偿量并控制移动平台在调焦方向对元件进行距离补偿;四、实时保存光谱信息及检测成像信息;五、根据检测扫描路径判断检测是否结束。实现了光学元件表面微缺陷光致荧光检测的自动对焦及检测。

    一种铝合金材料激光熔覆沉积层孔隙率抑制工艺方法

    公开(公告)号:CN116475430A

    公开(公告)日:2023-07-25

    申请号:CN202310386619.X

    申请日:2023-04-12

    Abstract: 本发明提供一种铝合金材料激光熔覆沉积层孔隙率抑制工艺方法,涉及激光增材修复技术领域,为解决现有方法得到的熔覆层孔隙率较高,缺少同时对熔覆层间搭接策略和工艺参数进行优化的工艺方法的问题。本发明首先确定影响铝合金材料激光熔覆沉积层孔隙率的工艺参数及范围,进行单道熔覆层单因素实验,分析单道熔覆层的成型规律,确定多道多层熔覆层工艺参数范围;然后针对不同的搭接策略开展熔覆实验,确定最优熔覆层间搭接策略;最后基于最优熔覆层间搭接策略、多道多层熔覆层工艺参数范围,开展多道多层熔覆正交实验,确定最低孔隙率的工艺参数组合。基于本发明的工艺参数组合可在铝合金基材上制备出几乎无孔隙缺陷的熔覆层。

    一种光学元件全口径表面微缺陷光致荧光检测用自动对焦检测方法

    公开(公告)号:CN116754565B

    公开(公告)日:2024-04-26

    申请号:CN202310977429.5

    申请日:2023-08-04

    Abstract: 本发明一种光学元件全口径表面微缺陷光致荧光检测用自动对焦检测方法,涉及光学元件技术领域,为解决现有的对焦检测方法,需要手动对焦及检测,效率低,且无法保证检测结果的准确性和一致性的问题。包括如下步骤:一、安装物镜与待测光学元件;二、确定待检测区域内多个标定检测点坐标,构建检测物镜焦平面方程,制定检测扫描路径;三、控制元件沿检测扫描路径移动进行检测,判断待测点是否处于物镜焦平面,若是,则在该点进行扫描检测,若不是,则计算补偿量并控制移动平台在调焦方向对元件进行距离补偿;四、实时保存光谱信息及检测成像信息;五、根据检测扫描路径判断检测是否结束。实现了光学元件表面微缺陷光致荧光检测的自动对焦及检测。

Patent Agency Ranking