一种应用差分隐私保护的分层联邦学习方法及系统

    公开(公告)号:CN113361694B

    公开(公告)日:2022-03-15

    申请号:CN202110740543.7

    申请日:2021-06-30

    Abstract: 一种应用差分隐私保护的分层联邦学习方法及系统,涉及联邦学习技术领域,用以解决现有的端‑边‑云分层联邦学习方法不能有效且严格地减少训练数据的隐私泄露风险。本发明技术要点包括:客户端进行本地模型训练、求解本地模型参数与隐私保护;边缘服务器对多个包含扰动保护的本地模型参数进行端‑边聚合与隐私保护;云服务器对多个包含扰动保护的边缘聚合参数进行边‑云聚合计算,获得全局模型参数;迭代执行上述步骤直至每个客户端的本地更新次数达到其预设的本地更新总次数后停止执行,完成分层联邦学习模型训练。本发明实现了在分层联邦学习景下有效且严格地减少训练数据的隐私泄露风险。

    一种隐私保护移动服务推荐方法及客户端、推荐系统

    公开(公告)号:CN110321479B

    公开(公告)日:2021-07-20

    申请号:CN201910447142.5

    申请日:2019-05-27

    Abstract: 一种隐私保护移动服务推荐方法及客户端、推荐系统,其中隐私保护移动服务推荐方法包括以下步骤:获取用户的样本数据,样本数据为用户的个人信息的省却信息、虚假信息、粗粒度信息或细粒度信息;根据样本数据从一网络服务提供商接收第一服务推荐列表;根据用户的细粒度信息从第一服务推荐列表中筛选且生成第二服务推荐列表;将第二服务推荐列表展示给用户。由于将第一服务推荐列表下载到本地客户端来辅助生成符合用户需求的第二服务推荐列表,使得在保证用户个人信息不受网络服务提供商侵犯的前提下,实现了为用户提供准确推荐服务的功能,能够维持移动服务推荐精度与保护用户隐私之间的平衡,利于用户更好地管理好个人信息。

    一种应用差分隐私保护的分层联邦学习方法及系统

    公开(公告)号:CN113361694A

    公开(公告)日:2021-09-07

    申请号:CN202110740543.7

    申请日:2021-06-30

    Abstract: 一种应用差分隐私保护的分层联邦学习方法及系统,涉及联邦学习技术领域,用以解决现有的端‑边‑云分层联邦学习方法不能有效且严格地减少训练数据的隐私泄露风险。本发明技术要点包括:客户端进行本地模型训练、求解本地模型参数与隐私保护;边缘服务器对多个包含扰动保护的本地模型参数进行端‑边聚合与隐私保护;云服务器对多个包含扰动保护的边缘聚合参数进行边‑云聚合计算,获得全局模型参数;迭代执行上述步骤直至每个客户端的本地更新次数达到其预设的本地更新总次数后停止执行,完成分层联邦学习模型训练。本发明实现了在分层联邦学习景下有效且严格地减少训练数据的隐私泄露风险。

    一种隐私保护移动服务推荐方法及客户端、推荐系统

    公开(公告)号:CN110321479A

    公开(公告)日:2019-10-11

    申请号:CN201910447142.5

    申请日:2019-05-27

    Abstract: 一种隐私保护移动服务推荐方法及客户端、推荐系统,其中隐私保护移动服务推荐方法包括以下步骤:获取用户的样本数据,样本数据为用户的个人信息的省却信息、虚假信息、粗粒度信息或细粒度信息;根据样本数据从一网络服务提供商接收第一服务推荐列表;根据用户的细粒度信息从第一服务推荐列表中筛选且生成第二服务推荐列表;将第二服务推荐列表展示给用户。由于将第一服务推荐列表下载到本地客户端来辅助生成符合用户需求的第二服务推荐列表,使得在保证用户个人信息不受网络服务提供商侵犯的前提下,实现了为用户提供准确推荐服务的功能,能够维持移动服务推荐精度与保护用户隐私之间的平衡,利于用户更好地管理好个人信息。

Patent Agency Ranking