-
公开(公告)号:CN118551497A
公开(公告)日:2024-08-27
申请号:CN202410615624.8
申请日:2024-05-17
Applicant: 哈尔滨工业大学
IPC: G06F30/17 , G06F30/20 , G06F119/08 , G06F119/14
Abstract: 气冷涡轮叶片气膜冷却结构拓扑设计方法,涉及气冷涡轮设计领域。解决在实体建模软件中进行气膜冷却孔的轴线设计繁琐的,气膜孔中心点位置难以确定,每个孔口根据法线方向确定孔轴线操作复杂、易于出错的问题。所述方法包括:将气膜孔进行参数化处理,获取气膜孔中心点;根据气膜孔中心点和气膜孔的喷射角度确定气膜孔的轴线;根据气膜孔截面进行参数化处理,获取截面气膜孔的几何特征;根据气截面气膜孔的几何特征和轴线确定冷却气膜孔造型。本发明简化了气膜孔的设计过程。
-
公开(公告)号:CN118410737A
公开(公告)日:2024-07-30
申请号:CN202410556044.6
申请日:2024-05-07
Applicant: 哈尔滨工业大学
IPC: G06F30/28 , G06F30/23 , G06F30/17 , G06T17/20 , G06F113/08 , G06F119/14 , G06F111/10 , G06F113/14 , G06F119/02 , G06F119/08 , G06F119/04
Abstract: 本发明是一种涡轮叶片单向气热固耦合应力分析方法。本发明涉及涡轮叶片应力分析技术领域,本发明以重型燃气轮机实际运行参数和涡轮叶片材料特性为边界条件,考虑转子入口参数沿径向的不均匀性等因素,在燃气轮机叶片热‑流‑固耦合模拟中,考虑了冷却空气混合引起的工作流体物理性质和气体成分的变化。在获得涡轮叶片内外流场和温度场后,对涡轮叶片模型进行结构有限元分析,得到涡轮叶片在使用条件下的热应力分布。
-
公开(公告)号:CN118410598A
公开(公告)日:2024-07-30
申请号:CN202410556053.5
申请日:2024-05-07
Applicant: 哈尔滨工业大学
IPC: G06F30/18 , G06F30/17 , G06F30/23 , G06T17/20 , G06F30/28 , G06F111/04 , G06F113/14 , G06F119/08 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 一种气冷涡轮叶片平行肋扰流拓扑设计方法,涉及气冷涡轮设计技术领域,包括:获取叶片参数化数据,所述叶片参数化数据包括但不限于叶片内形截面型线、叶根截面线和叶片倾斜角;采用隔板定位的方法设置肋片弦向位置;将叶根截面线的前缘点、尾缘点和中心点确定的平面作为为底平面,从叶根截面线中心点沿所述底平面法向向上平移预设距离S0,得到第一个肋片侧面中心点坐标;依次平移肋间距S和肋宽b,得到所有肋侧面型线的基准点,根据叶片倾斜角计算出肋型线方向,进而得到平行肋扰流拓扑构建结果;该方法基于气冷涡轮叶片参数化数据,能够快速准确地将平行肋扰流在空间曲面上定位,选定合适的扰流参数进行拓扑设计。
-
公开(公告)号:CN118410593A
公开(公告)日:2024-07-30
申请号:CN202410556047.X
申请日:2024-05-07
Applicant: 哈尔滨工业大学
IPC: G06F30/17 , G06F30/28 , G06F30/23 , G06T17/20 , G06F113/08 , G06F119/14 , G06F111/10 , G06F111/04 , G06F113/14 , G06F119/02 , G06F119/04 , G06F119/08
Abstract: 透平叶片低应力多物理场匹配分析方法及系统,属于能源动力技术领域,解决了如何将以低应力为目标的多物理场匹配设计与透平传统的气动、传热、结构强度设计之间合理融合,同时确定各关键设计参数的选取范围,建立相应的设计准则的问题。所述方法包括:S1:选取待分析的透平叶片,构建计算网格,根据透平叶片的流体域和固体域对计算网格进行划分;S2:对透平叶片进行流场仿真,计算获得离心载荷、温度载荷和压力载荷,并对透平叶片添加约束;S3:将离心载荷、温度载荷和压力载荷同时施加到所述透平叶片上,计算得到所述透平叶片的等效应力云图,完成所述透平叶片的低应力多物理场匹配分析。本发明适用于透平叶片低应力分析及叶片设计场景。
-
公开(公告)号:CN118410595B
公开(公告)日:2025-04-04
申请号:CN202410556161.2
申请日:2024-05-07
Applicant: 哈尔滨工业大学
IPC: G06F30/17 , G06F30/18 , G06F30/23 , G06T17/20 , G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14 , G06F119/08 , G06F119/02 , G06F111/08 , G06F113/14
Abstract: 涡轮气冷叶片低应力多学科一体化设计方法及系统,属于能源动力技术领域,解决发动机气冷涡轮叶片中,由于叶片结构复杂,不同部位温差较大,变形对热流也有较大影响,从而产生的问题。方法包括:S1:采集涡轮待优化部分的参数,对所述待优化部分进行参数化设计;S2:建立待优化部分的结构化网格,计算待优化部分的固体域的质量和强度;S3:根据所述固体域的质量和强度,基于代理模型,采用多目标遗传算法,对所述涡轮待优化的部分进行优化。本发明适用于涡轮一体化设计场景。
-
公开(公告)号:CN118504315A
公开(公告)日:2024-08-16
申请号:CN202410557433.0
申请日:2024-05-07
Applicant: 哈尔滨工业大学
IPC: G06F30/23 , G06F30/17 , G06F30/18 , G06T17/20 , G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14 , G06F119/08 , G06F113/14
Abstract: 本申请公开了一种三维温度场计算方法,属于温度仿真技术领域,包括:获取计算参数,包括边界参数和气冷叶片模型参数;根据所述计算参数生成气冷叶片的固体计算域,针对固体计算域生成计算网格;根据计算网格和固体域能量守恒方程计算气冷叶片的三维温度场分布。本申请提供的方法应用于气冷叶片的三维温度场分布计算,可得到更准确的三维温度场分布,有利于更好地理解叶片的温度特性。
-
公开(公告)号:CN118468493A
公开(公告)日:2024-08-09
申请号:CN202410556049.9
申请日:2024-05-07
Applicant: 哈尔滨工业大学
IPC: G06F30/18 , G06F30/17 , G06F30/28 , G06F113/08 , G06F119/14 , G06F113/14 , G06F119/08
Abstract: 一种气冷涡轮叶片柱肋扰流拓扑设计方法,涉及气冷涡轮设计技术领域,方法包括:获取叶片参数化数据,所述叶片参数化数据包括但不限于叶型截面数据、劈缝数据以及尾缘点数据;将叶型截面编号,实现尾缘的区间划分;根据所述叶型截面数据以及尾缘点数据,计算各个叶型截面的劈缝进口中间点m的法向量;求出各个所述中间点m相对于编号为1的叶型截面的距离Li;根据所述距离Li及所述法向量依次递推计算每一排扰流柱叶根处的各个定位点,进而得到柱肋扰流拓扑构建结果;该方法通过计算叶片截面劈缝进口中间点法向量,依次递推出各个柱肋的定位点,实现了高效快速的柱肋扰流拓扑设计。
-
公开(公告)号:CN118410738A
公开(公告)日:2024-07-30
申请号:CN202410556046.5
申请日:2024-05-07
Applicant: 哈尔滨工业大学
IPC: G06F30/28 , G06F30/23 , G06F30/18 , G06F30/17 , G06T17/20 , G06F113/08 , G06F119/14 , G06F111/10 , G06F113/14 , G06F119/08 , G06F119/04 , G06F119/02 , G06F111/04
Abstract: 透平气冷叶片低应力分析方法及系统,属于能源动力技术领域,解决在进行低应力计算时,强耦合解法计算费用高,弱耦合解法难以得到收敛解的问题。所述方法包括:导入叶片流体域的几何模型,对所述几何模型进行划分;设置边界条件,包括主流入口的数据、主流出口的数据和冷气入口的数据,进行数值计算;根据所述边界条件计算获得流固交界面的物理量,根据所述流固交界面的物理量,获取叶片的热应力分布和气动力分布;根据涡轮转速加载离心力,根据叶片的热应力分布、气动力分布以及离心力,得到涡轮的应力应变分布,完成叶片的低应力分析。本发明适用于透平气冷叶片低应力多学科一体化设计场景。
-
公开(公告)号:CN118410600A
公开(公告)日:2024-07-30
申请号:CN202410557437.9
申请日:2024-05-07
Applicant: 哈尔滨工业大学
IPC: G06F30/18 , G06F30/17 , G06F30/28 , G06F30/23 , G06T17/20 , G06F113/08 , G06F119/14 , G06F111/10 , G06F119/08 , G06F113/14
Abstract: 一维管网计算经验公式设定方法,涉及航空发动机设计与制造技术领域。为解决现有技术中存在的,传统管网计算模型在叶片冷却结构建立方面存在复杂度高和精度不足的技术问题,本发明提供的技术方案为:一维管网计算经验公式设定方法,方法包括:划分叶片成预设数量段,将每段定义为一个节流单元;根据节流单元,建立一维计算模型;对一维计算模型进行简化;为每个节流单元匹配对应的参数;在所述一维计算模型中,设定流阻经验公式、换热系数经验公式和气膜孔经验公式。可以应用于航空发动机的热管理系统设计与优化中。
-
公开(公告)号:CN118410599A
公开(公告)日:2024-07-30
申请号:CN202410557436.4
申请日:2024-05-07
Applicant: 哈尔滨工业大学
IPC: G06F30/18 , G06F30/17 , G06F30/28 , G06F113/08 , G06F119/14 , G06F119/08 , G06F113/14 , G06F111/10
Abstract: 一维管网计算方法,涉及航空发动机设计与制造技术领域。为解决现有技术中存在的,传统管网计算模型在叶片冷却结构建立方面存在复杂度高和精度不足的技术问题,本发明提供的技术方案为:一维管网计算模型建立方法,方法包括:划分叶片成预设数量段,将每段定义为一个节流单元,并定义节点;为节流单元和节点编号,并记录节流单元和节点之间的几何进出口关系;根据节流单元和节点之间的几何进出口关系,建立一维计算模型;对一维计算模型进行简化;为每个节流单元匹配对应的参数;根据模型,通过迭代计算节点之间的压力;根据模型,通过迭代计算节点之间的温度。可以应用于航空发动机的热管理系统设计与优化中。
-
-
-
-
-
-
-
-
-