-
公开(公告)号:CN116845253B
公开(公告)日:2024-01-26
申请号:CN202310769996.1
申请日:2023-06-27
Applicant: 哈尔滨工业大学
Abstract: 一种质子交换膜燃料电池催化层三相界面的调控方法,它涉及质子交换膜燃料电池膜电极的制法。它是要解决现有的质子交换膜燃料电池催化层内部三相反应界面分布不均而影响电化学性能的技术问题。本方法:一、制备硫掺杂改性碳载体;二、制备Pt/C催化剂;三、配制膜电极浆料;四、制备膜电极。本发明通过碳载体硫掺杂改性提高载体的亲水性、分阶段调控浆料中溶剂配比以及控温工艺三种手段相结合的方式,定向调控ionomer在Pt表面的吸附状态,实现ionomer在催化剂上的定向吸附,改善质子交换膜燃料电池催化层内的Pt‑ionomer三相反应界面,提升催化层反应能力,降低催化剂使用量和成本,可用于质子交换膜燃料电池领域。
-
公开(公告)号:CN116565240B
公开(公告)日:2024-03-19
申请号:CN202310529490.3
申请日:2023-05-11
Applicant: 哈尔滨工业大学 , 江苏源氢新能源科技股份有限公司
Abstract: 一种稀土金属Ln掺杂NC载体担载的PtLn合金催化剂及其制备方法与应用(Ln为La、Ce),属于电催化领域。通过在ZIF‑8中掺杂Ln源并碳化得到Ln掺杂氮碳材料LnOx‑NC;而后以其为载体,利用微波‑多元醇还原法将氯铂酸还原为PtNPs并担载在LnOx‑NC上,抽滤干燥后得到Pt/LnOx‑NC粉末;最后将Pt/LnOx‑NC退火,研磨后得到PtLn/LnOx‑NC合金催化剂。具有以下优点和有益效果:稀土金属Ln掺杂氮碳LnOx‑NC载体中的Ln元素以原子级的形式和氧化物LnOx存在;载体中以原子级存在的Ln也能够在退火过程中与PtNPs形成PtLn合金结构,PtLn结构能有效调控Pt纳米颗粒对反应中间体的吸附能力从而调节催化剂活性。
-
公开(公告)号:CN115763845B
公开(公告)日:2024-03-19
申请号:CN202211456797.7
申请日:2022-11-21
Applicant: 哈尔滨工业大学
IPC: H01M4/90 , H01M4/86 , C25B11/091 , C25B11/067 , C25B1/04 , B82Y40/00 , B82Y30/00 , B01J27/24
Abstract: 一种铬基无机物耦合过渡金属氮掺杂碳催化剂的制备方法,属于电催化领域。所述方法以配置金属M‑联吡啶溶液为起点,然后在上述溶液中依次加入氯化钠、铬盐和有机铵盐并搅拌使固体溶解后蒸干得到混合粉末;然后通过退火‑去模板‑酸洗‑抽滤‑干燥得到催化剂。具有以下优点:通过熔融盐模板法将铬盐无机物载体引入到M‑N‑C原子级分散催化剂中取代常规碳载体,该方法适用于多种金属‑氮共掺杂碳催化剂(如Fe、Cu、Ni等);催化剂为相互连接纳米晶体组成的超薄的二维片状,可有效提升传质能力;铬基无机盐引入可提升法拉第效率、催化活性以及在高电流、长时间工作条件下的耐久性,明显优于商业铂碳催化剂以及过渡金属氮掺杂碳。
-
公开(公告)号:CN117254042A
公开(公告)日:2023-12-19
申请号:CN202311334431.7
申请日:2023-10-16
Applicant: 哈尔滨工业大学
IPC: H01M4/88 , H01M4/92 , H01M8/1004
Abstract: 一种质子交换膜燃料电池无裂纹膜电极的制备方法,它涉及质子交换膜燃料电池膜电极的制备方法。它是要解决现有的直涂法制备质子交换膜燃料电池膜电极时催化层时存在的质子交换膜溶胀严重、催化层龟裂、三相反应界面数量少而影响电池性能及耐久性的技术问题。本方法:一、制备氧、氟双掺杂改性碳载体;二、制备高载量Pt/C催化剂;三、配置免消泡催化剂浆料;四、催化层的涂覆与干燥,得到质子交换膜燃料电池无裂纹催化层。本发明制备的催化层无龟裂且均匀、平整,在燃料电池中,催化层的峰值功率密度达到1.42W/cm2,在额定电压0.65V处,功率密度能够达到1.23W/cm2。可用于质子交换膜燃料电池领域。
-
公开(公告)号:CN118472285B
公开(公告)日:2024-11-05
申请号:CN202410744968.9
申请日:2024-06-11
Applicant: 哈尔滨工业大学 , 江苏源氢新能源科技股份有限公司
IPC: H01M4/88 , H01M8/1004
Abstract: 一种适配低湿低背压工况的膜电极的制备方法,它涉及燃料电池膜电极的制备方法,它是要解决现有的膜电极在低湿低背压工况下易失水、质子传导困难致性能快速下降的问题。本方法:一、制备氧硫共掺杂碳材料;二、制备烷基咪唑基质子型离子液体;三、配制保水层浆料;四、制备保水层;五、配制膜电极催化层浆料;六、制备膜电极。本发明的膜电极在背压为100kPa、相对低湿度为20%的H2/O2环境下的峰值功率密度最高能够达到1.44W/cm2,比传统膜电极提升了8.3%。通过电堆极化测试表明,发明的膜电极在0.65V时的电流密度达到1.65A/cm2,可比传统膜电极提升了16%,可用于质子交换膜燃料电池领域。
-
公开(公告)号:CN116845253A
公开(公告)日:2023-10-03
申请号:CN202310769996.1
申请日:2023-06-27
Applicant: 哈尔滨工业大学
Abstract: 一种质子交换膜燃料电池催化层三相界面的调控方法,它涉及质子交换膜燃料电池膜电极的制法。它是要解决现有的质子交换膜燃料电池催化层内部三相反应界面分布不均而影响电化学性能的技术问题。本方法:一、制备硫掺杂改性碳载体;二、制备Pt/C催化剂;三、配制膜电极浆料;四、制备膜电极。本发明通过碳载体硫掺杂改性提高载体的亲水性、分阶段调控浆料中溶剂配比以及控温工艺三种手段相结合的方式,定向调控ionomer在Pt表面的吸附状态,实现ionomer在催化剂上的定向吸附,改善质子交换膜燃料电池催化层内的Pt‑ionomer三相反应界面,提升催化层反应能力,降低催化剂使用量和成本,可用于质子交换膜燃料电池领域。
-
公开(公告)号:CN115763845A
公开(公告)日:2023-03-07
申请号:CN202211456797.7
申请日:2022-11-21
Applicant: 哈尔滨工业大学
IPC: H01M4/90 , H01M4/86 , C25B11/091 , C25B11/067 , C25B1/04 , B82Y40/00 , B82Y30/00 , B01J27/24
Abstract: 一种铬基无机物耦合过渡金属氮掺杂碳催化剂的制备方法,属于电催化领域。所述方法以配置金属M‑联吡啶溶液为起点,然后在上述溶液中依次加入氯化钠、铬盐和有机铵盐并搅拌使固体溶解后蒸干得到混合粉末;然后通过退火‑去模板‑酸洗‑抽滤‑干燥得到催化剂。具有以下优点:通过熔融盐模板法将铬盐无机物载体引入到M‑N‑C原子级分散催化剂中取代常规碳载体,该方法适用于多种金属‑氮共掺杂碳催化剂(如Fe、Cu、Ni等);催化剂为相互连接纳米晶体组成的超薄的二维片状,可有效提升传质能力;铬基无机盐引入可提升法拉第效率、催化活性以及在高电流、长时间工作条件下的耐久性,明显优于商业铂碳催化剂以及过渡金属氮掺杂碳。
-
公开(公告)号:CN119764465A
公开(公告)日:2025-04-04
申请号:CN202411748915.0
申请日:2024-12-02
Applicant: 哈尔滨工业大学
IPC: H01M4/88
Abstract: 一种具有梯度化微孔层的燃料电池气体扩散层的制备方法,它涉及燃料电池气体扩散层的制备方法,它是要解决现有的梯度化气体扩散层的水气管理能力差的技术问题。制法:按醇溶剂的体积分数不同配制分散液,再将碳粉、疏水剂加入到分散液,得到不同的浆料;并将浆料按序涂覆在疏水碳纸表面,得到多层微孔层结构的气体扩散层,在纵向上形成梯度化微孔层孔道结构,气体扩散层的孔隙率为82.97%,利用本发明的气体扩散层和东丽商业气体扩散层在相同的条件下制备的燃料电池,本发明的燃料电池的峰值功率密度为1659~1833mW·cm‑2,比用东丽商业气体扩散层应用燃料电池提升21.99%~34.78%,可用于燃料电池领域。
-
公开(公告)号:CN119419320A
公开(公告)日:2025-02-11
申请号:CN202411748918.4
申请日:2024-12-02
Applicant: 哈尔滨工业大学
IPC: H01M8/1004 , H01M4/92 , H01M4/88
Abstract: 一种质子交换膜燃料电池的自增湿膜电极的制备方法,它涉及膜电极的制法,它是要解决现有的自增湿膜电极的性能差的技术问题。本方法:一、利用2,4,6‑三甲酰基均苯三酚和2,5‑二氨基苯磺酸用两相法合成COFs材料;二、利用Pt/C催化剂和全氟磺酸离聚物溶液配制浆料a;利用COFs材料、Pt/C催化剂和全氟磺酸离聚物溶液配制自增湿催化层浆料b;三、浆料a涂在质子交换膜的阳极面,浆料b涂在阴极面,得自增湿膜电极。该电极以H2/O2为燃料、在20%相对湿度下的功率密度为756.3mW/cm2;以H2/air为燃料、在50%相对湿度下的功率密度为437.8~879.7mW/cm2,可用于燃料电池领域。
-
公开(公告)号:CN117254042B
公开(公告)日:2024-03-19
申请号:CN202311334431.7
申请日:2023-10-16
Applicant: 哈尔滨工业大学
IPC: H01M4/88 , H01M4/92 , H01M8/1004
Abstract: 一种质子交换膜燃料电池无裂纹膜电极的制备方法,它涉及质子交换膜燃料电池膜电极的制备方法。它是要解决现有的直涂法制备质子交换膜燃料电池膜电极时催化层时存在的质子交换膜溶胀严重、催化层龟裂、三相反应界面数量少而影响电池性能及耐久性的技术问题。本方法:一、制备氧、氟双掺杂改性碳载体;二、制备高载量Pt/C催化剂;三、配置免消泡催化剂浆料;四、催化层的涂覆与干燥,得到质子交换膜燃料电池无裂纹催化层。本发明制备的催化层无龟裂且均匀、平整,在燃料电池中,催化层的峰值功率密度达到1.42W/cm2,在额定电压0.65V处,功率密度能够达到1.23W/cm2。可用于质子交换膜燃料电池领域。
-
-
-
-
-
-
-
-
-