-
公开(公告)号:CN113630232B
公开(公告)日:2023-09-01
申请号:CN202110945464.X
申请日:2021-08-17
Applicant: 哈尔滨工业大学
IPC: H04L7/00
Abstract: 本发明提出一种多频混合外差式干涉信号同步分离与同步测相系统及方法,所述系统包括多频混合信号输入端、下变频电路、自混频电路、滤波电路、第一差分滤波电路、第一比较整形电路、第二比较整形电路和相位测量电路;通过选取与多频混合信号中低频信号频率相同的正弦波信号作为本振信号,与多频混合信号进行下变频混频处理,并通过差分LC滤波电路,滤除DC信号,实现粗测信号的提取;通过混频器本振信号端与射频端相连,使多频混合信号自混频,利用混频器后的RC电路滤除自混频输出信号中的干扰信号,并通过差分LC滤波电路,滤除DC信号,实现精测信号的提取。本发明保证了精测、粗测信号相位测量的同步性,并减小了测量误差。
-
公开(公告)号:CN113759383A
公开(公告)日:2021-12-07
申请号:CN202111009520.5
申请日:2021-08-31
Applicant: 哈尔滨工业大学
Abstract: 本发明提出一种基于单光源多频混合外差式激光跟踪仪系统,本发明提出的激光跟踪系统通过对双纵模激光器进行多声光移频以获得多频率激光,利用光源的双纵模间隔构建绝对测距精测尺,多声光移频器的移频差构建绝对测距粗测尺及实现双频光干涉相对位移测量,并依靠多反射镜反射与偏振棱镜分光合光实现多波长绝对距离、相对位移及PSD位置的同步测量,改进现有激光跟踪仪采用多光源导致测量基准不同,难以溯源的问题。
-
公开(公告)号:CN111064072B
公开(公告)日:2020-11-13
申请号:CN201911410419.3
申请日:2019-12-31
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了基于激光管多点加热的高频率复现性的激光稳频方法与装置,所述激光稳频装置包括:稳频控制电路,所述稳频控制电路包括偏振分光镜、光功率转换电路、A/D转换电路、测温电路、微处理器、D/A转换器和加热薄膜驱动器,所述偏振分光镜设置在任一所述透光孔外,所述光功率转换电路设置在偏振分光镜的反射及折射光路上,所述光功率转换电路、A/D转换电路、微处理器、D/A转换器、加热薄膜驱动器和多组加热薄膜依次单向连接,所述温度传感器、测温电路和微处理器依次单向连接。本发明的方法可以使激光器的频率复现性从10‑8提升至10‑9,本发明的装置可以有效避免最终的稳频温度点漂移的情况。
-
公开(公告)号:CN118937828B
公开(公告)日:2025-03-25
申请号:CN202410990148.8
申请日:2024-07-23
Applicant: 哈尔滨工业大学
Abstract: 一种多通道互谱双向电阻低频噪声测试电路及方法,属于航空航天技术领域,本发明为解决现有技术中电阻低频噪声无法达到0.1mHz以及测量稳定性差的问题。本发明方案:主控芯片发出指令给继电器,进而控制低噪声电压基准源给惠斯通电桥切换加载正向/反向电压,惠斯通电桥的差分电压输出端同时与电阻噪声双通道互谱采集电路的两个输入端相连;CH1区域GND和CH2区域GND分别接入本底噪声双通道互谱采集电路的两个输入端;电阻噪声双通道互谱采集电路的两个输出端、本底噪声双通道互谱采集电路的两个输出端分别与ADC信号采集电路的四个输入端相连,ADC信号采集电路的输出端与主控芯片的输入端相连,主控芯片通过互谱算法获取被测电阻的噪声谱密度。
-
公开(公告)号:CN113687378B
公开(公告)日:2023-06-30
申请号:CN202110945454.6
申请日:2021-08-17
Applicant: 哈尔滨工业大学
IPC: G01S17/36 , G01S7/4911 , G01S7/4915 , G01S7/4912 , G01S7/4913
Abstract: 本发明提出一种基于单光源多频混合外差式激光绝对测距系统及测距方法,所述方法通过对双纵模激光器进行多声光移频以获得多频率激光,利用光源的双纵模间隔构建精测尺,多声光移频器的移频差构建粗测尺,并依靠多反射镜反射与偏振棱镜分光合光实现多频光束共光路传输,避免传统方法中采用光纤耦合器合光带来的光损耗,实现高功率多波长绝对距离测量。
-
公开(公告)号:CN111092362B
公开(公告)日:2021-02-19
申请号:CN201911410391.3
申请日:2019-12-31
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了基于温度自感知柔性薄膜加热器的激光稳频方法与装置,所述双纵模激光器电源的正负极分别连接所述激光管的两端,所述激光管嵌套在所述导热壳体配在所述热隔离层中,所述散热层靠近所述激光管两端的位置上各开有一透光孔,所述偏振分光镜设置在其中一个所述透光孔外,所述光功率转换电路设置在偏振分光镜的反射及折射光路上,所述柔性薄膜、测温电路和A/D转换电路依次单向连接,所述温度传感器粘接在所述散热层外壁上,所述温度传感器与所述微处理器单向连接。本发明的方法可以使激光器的频率复现性从10‑8提升至10‑9,本发明的装置避免了由于热传递产生的热迟滞效应,为激光器的稳频算法提供实时准确的温度数据。
-
公开(公告)号:CN111092362A
公开(公告)日:2020-05-01
申请号:CN201911410391.3
申请日:2019-12-31
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了基于温度自感知柔性薄膜加热器的激光稳频方法与装置,所述双纵模激光器电源的正负极分别连接所述激光管的两端,所述激光管嵌套在所述导热壳体配在所述热隔离层中,所述散热层靠近所述激光管两端的位置上各开有一透光孔,所述偏振分光镜设置在其中一个所述透光孔外,所述光功率转换电路设置在偏振分光镜的反射及折射光路上,所述柔性薄膜、测温电路和A/D转换电路依次单向连接,所述温度传感器粘接在所述散热层外壁上,所述温度传感器与所述微处理器单向连接。本发明的方法可以使激光器的频率复现性从10-8提升至10-9,本发明的装置避免了由于热传递产生的热迟滞效应,为激光器的稳频算法提供实时准确的温度数据。
-
公开(公告)号:CN119126877A
公开(公告)日:2024-12-13
申请号:CN202411263040.5
申请日:2024-09-10
Applicant: 哈尔滨工业大学 , 北京空间飞行器总体设计部
IPC: G05D23/20
Abstract: 一种主被动控温相结合的mK级超稳恒温装置及方法,属于航空航天技术领域,本发明为解决现有航天器领域恒温系统的恒温稳定度无法达到mK级的问题。本发明方案:铝箔外壳包裹在隔热结构外表面上,恒温结构置于隔热结构正中心的正方体槽内;恒温结构为中间留有槽的实心铝合金正方体块,恒温结构的外表面覆设加热薄膜,高精度测温仪的测温Ⅰ路探测头设置于恒温结构的槽内,用于探测恒温结构的实时温度,高精度测温仪的测温Ⅱ路探测头用于探测环境温度,所述恒温结构的实时温度和环境温度同时发送给恒温控制电路,恒温结构计算对应电压值驱动加热薄膜对恒温结构进行加热的温度控制,以实现恒温结构的温度达到并稳定在目标温度。
-
公开(公告)号:CN113630232A
公开(公告)日:2021-11-09
申请号:CN202110945464.X
申请日:2021-08-17
Applicant: 哈尔滨工业大学
IPC: H04L7/00
Abstract: 本发明提出一种多频混合外差式干涉信号同步分离与同步测相系统及方法,所述系统包括多频混合信号输入端、下变频电路、自混频电路、滤波电路、第一差分滤波电路、第一比较整形电路、第二比较整形电路和相位测量电路;通过选取与多频混合信号中低频信号频率相同的正弦波信号作为本振信号,与多频混合信号进行下变频混频处理,并通过差分LC滤波电路,滤除DC信号,实现粗测信号的提取;通过混频器本振信号端与射频端相连,使多频混合信号自混频,利用混频器后的RC电路滤除自混频输出信号中的干扰信号,并通过差分LC滤波电路,滤除DC信号,实现精测信号的提取。本发明保证了精测、粗测信号相位测量的同步性,并减小了测量误差。
-
公开(公告)号:CN111048987B
公开(公告)日:2021-02-12
申请号:CN201911410452.6
申请日:2019-12-31
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了基于激光管温度多点采集的高频率复现性激光稳频方法与装置,所述激光稳频装置包括:稳频控制电路,所述稳频控制电路包括偏振分光镜、光功率转换电路、A/D转换电路、测温电路、微处理器、D/A转换器和加热薄膜驱动器,所述偏振分光镜设置在任一所述透光孔外,所述光功率转换电路设置在偏振分光镜的反射及折射光路上,所述光功率转换电路、A/D转换电路、微处理器、D/A转换器、加热薄膜驱动器和多组加热薄膜依次单向连接,所述温度传感器、测温电路和微处理器依次单向连接。本发明的方法可以使激光器的频率复现性从10‑8提升至10‑9,本发明的装置可以有效避免最终的稳频温度点漂移的情况。
-
-
-
-
-
-
-
-
-