基于变质量的宽频VIV能量收集装置及其效率验证方法

    公开(公告)号:CN113572306B

    公开(公告)日:2023-07-04

    申请号:CN202110942472.9

    申请日:2021-08-17

    Abstract: 基于变质量的宽频VIV能量收集装置及其效率验证方法。目前涡激振动能量收集装置在流速变化下,锁定区间随之变化,导致能量收集效率低。本发明中台架两侧分别设有多个驰振机构,纵向连接柱的顶端同轴设置有上筒体,上筒体顶端可拆卸连接有封盖,上筒体内设有电磁线圈,上筒体通过上弹性件与台架的两端相连接,纵向连接柱下端设有移动条,电磁发电机构输入端与移动条相连接;效率验证方法首先建立驰振能量振动方程模型,基于有限差分法对常微分方程组进行求解,基于分析数据,根据宽频VIV能量收集装置的基础数据进行计算分析,得出理论指标值,将理论指标值与基于变质量的宽频VIV能量收集装置的实际指标值相比较,从而实现敏感性验证过程。

    多相内流激励下的输流管道振动响应预测方法

    公开(公告)号:CN114819347A

    公开(公告)日:2022-07-29

    申请号:CN202210449778.5

    申请日:2022-04-26

    Abstract: 多相内流激励下的输流管道振动响应预测方法,涉及一种输流管道振动响应预测方法。为了解决目前输流管道振动响应预测都是基于内部为单相内流的情况,从而不能很好对多相内流情况下的输流管道振动响应进行预测的问题。本发明将输流管道内部流体按照三种相成分表示内流的质量、动量和动能,并通过滑移因子建立三相之间流动速度的联系;基于单相内流激励下的输流立管的振动方程,确定多项内流激励下输流管道振动方程;然后对多项内流激励下输流管道振动方程进行无量纲化,并在时间与空间上进行离散,再根据爱恩斯坦求和法则进行化简得到最终形式,多项内流激励下输流管道振动方程的最终形式求解,实现输流管道振动响应预测。

    一种边界激励细长张力梁不稳定区间的快速预测方法

    公开(公告)号:CN113111420B

    公开(公告)日:2022-04-22

    申请号:CN202110418299.2

    申请日:2021-04-19

    Abstract: 一种边界激励细长张力梁不稳定区间的快速预测方法。海洋立管因共振而产生疲劳损伤,对此有重要影响因素为平台在环境载荷作用下对立管施加的时变张力,但缺少相关直接准确的预测方式。本发明建立完整的边界激励与立管结构互为耦合的振动模型,根据振动模型形成振动控制方程,基于伽辽金法取前四阶振型对振动控制方程离散,结合Floquet理论对振动模型的不稳定区间进行判定,通过改变振动模型的阻尼性能形成振动模型的最小化不稳定区域,通过对变张力幅值和频率的调控确保振动模型处于稳定状态的过程。本发明用于海洋工程领域中。

    内流作用下柔性管道非线性响应预测方法、系统及装置

    公开(公告)号:CN113033122A

    公开(公告)日:2021-06-25

    申请号:CN202110418298.8

    申请日:2021-04-19

    Abstract: 内流作用下柔性管道非线性响应预测方法、系统及装置,属于管道设计与预测技术领域。为了解决目前对管道的稳定性分析都是基于线性理论展开分析的,从而存在不能获得结构振动响应的诸多关键性信息。本发明针对内部流体运动的柔性管道非线性响应问题展开了数值研究,建立了完整的带内流作用下柔性管道运动的数值预测模型,用于分析内流速度以及不同系统参数下柔性管道非线性响应,该数值预报模型可以很好地模拟出不同内部流速、不同轴向力、不同流体压力、不同重力系数以及不同轴向柔度对柔性结构振动响应的影响;并可以很多好的揭示结构失稳动力学特征,可以很好的描述实际工程存在的问题。本发明主要应用于柔性管道非线性响应预测。

    参激与涡激耦合作用下海洋立管振动响应模型建立及预报方法

    公开(公告)号:CN114662321A

    公开(公告)日:2022-06-24

    申请号:CN202210314760.4

    申请日:2022-03-28

    Abstract: 参激与涡激耦合作用下海洋立管振动响应模型建立及预报方法,涉及一种海洋立管振动响应模型建立方法和预报方法。为了解决目前的海洋立管振动响应特性的研究均是将海洋立管轴线上的张力看作是恒定张力导致海洋立管振动响应存在非常大的误差的问题。本发明同时考虑海洋平台的沉浮运动以及海洋来流对立管的冲击作用,建立参激‑涡激耦合振动模型,然后基于张力变化因素,给出参激与涡激联合作用下海洋立管的结构振动控制方程。随后基于4阶Runge‑Kutta方法对结构振动控制方程以及尾流振子方程构成的耦合振动方程组进行联立求解,实现参激与涡激耦合作用下海洋立管振动响应分析。本发明主要用于海洋立管振动响应分析和预报。

    参激与涡激耦合作用下海洋立管振动响应模型建立及预报方法

    公开(公告)号:CN114662321B

    公开(公告)日:2024-11-22

    申请号:CN202210314760.4

    申请日:2022-03-28

    Abstract: 参激与涡激耦合作用下海洋立管振动响应模型建立及预报方法,涉及一种海洋立管振动响应模型建立方法和预报方法。为了解决目前的海洋立管振动响应特性的研究均是将海洋立管轴线上的张力看作是恒定张力导致海洋立管振动响应存在非常大的误差的问题。本发明同时考虑海洋平台的沉浮运动以及海洋来流对立管的冲击作用,建立参激‑涡激耦合振动模型,然后基于张力变化因素,给出参激与涡激联合作用下海洋立管的结构振动控制方程。随后基于4阶Runge‑Kutta方法对结构振动控制方程以及尾流振子方程构成的耦合振动方程组进行联立求解,实现参激与涡激耦合作用下海洋立管振动响应分析。本发明主要用于海洋立管振动响应分析和预报。

    一种基于分形理论的涡轮内部冷气结构

    公开(公告)号:CN117418906B

    公开(公告)日:2024-03-22

    申请号:CN202311743362.5

    申请日:2023-12-19

    Inventor: 罗磊 杜巍 柴盛林

    Abstract: 本发明提出了一种基于分形理论的涡轮内部冷气结构,属于涡轮内部冷气结构领域,主要目的是针对原有涡轮燃气温度提高导致叶片热负荷提高、热应力增大的情况,提供了一种基于分形理论的涡轮内部冷气结构设计,用于涡轮内部冷气结构的优化设计,该方法的特点是具有冷却效率高、叶片表面对流传热系数高、节省冷气成本等优点。本发明中,冷气分别从前后缘进入涡轮内部结构,一端通过前缘冷却腔体,再由前缘气膜冷却口排出,另一端进入尾缘冷却腔,经由蛇形通过多流程肋片换热后,尾缘劈缝冷却出流孔流出,很大程度地提高了涡轮内部冷气结构的冷却效率,增加了涡轮的使用寿命。

    内流作用下柔性管道非线性响应预测方法、系统及装置

    公开(公告)号:CN113033122B

    公开(公告)日:2022-04-22

    申请号:CN202110418298.8

    申请日:2021-04-19

    Abstract: 内流作用下柔性管道非线性响应预测方法、系统及装置,属于管道设计与预测技术领域。为了解决目前对管道的稳定性分析都是基于线性理论展开分析的,从而存在不能获得结构振动响应的诸多关键性信息。本发明针对内部流体运动的柔性管道非线性响应问题展开了数值研究,建立了完整的带内流作用下柔性管道运动的数值预测模型,用于分析内流速度以及不同系统参数下柔性管道非线性响应,该数值预报模型可以很好地模拟出不同内部流速、不同轴向力、不同流体压力、不同重力系数以及不同轴向柔度对柔性结构振动响应的影响;并可以很多好的揭示结构失稳动力学特征,可以很好的描述实际工程存在的问题。本发明主要应用于柔性管道非线性响应预测。

    一种边界激励细长张力梁不稳定区间的快速预测方法

    公开(公告)号:CN113111420A

    公开(公告)日:2021-07-13

    申请号:CN202110418299.2

    申请日:2021-04-19

    Abstract: 一种边界激励细长张力梁不稳定区间的快速预测方法。海洋立管因共振而产生疲劳损伤,对此有重要影响因素为平台在环境载荷作用下对立管施加的时变张力,但缺少相关直接准确的预测方式。本发明建立完整的边界激励与立管结构互为耦合的振动模型,根据振动模型形成振动控制方程,基于伽辽金法取前四阶振型对振动控制方程离散,结合Floquet理论对振动模型的不稳定区间进行判定,通过改变振动模型的阻尼性能形成振动模型的最小化不稳定区域,通过对变张力幅值和频率的调控确保振动模型处于稳定状态的过程。本发明用于海洋工程领域中。

    一种基于分形理论的涡轮内部冷气结构

    公开(公告)号:CN117418906A

    公开(公告)日:2024-01-19

    申请号:CN202311743362.5

    申请日:2023-12-19

    Inventor: 罗磊 杜巍 柴盛林

    Abstract: 本发明提出了一种基于分形理论的涡轮内部冷气结构,属于涡轮内部冷气结构领域,主要目的是针对原有涡轮燃气温度提高导致叶片热负荷提高、热应力增大的情况,提供了一种基于分形理论的涡轮内部冷气结构设计,用于涡轮内部冷气结构的优化设计,该方法的特点是具有冷却效率高、叶片表面对流传热系数高、节省冷气成本等优点。本发明中,冷气分别从前后缘进入涡轮内部结构,一端通过前缘冷却腔体,再由前缘气膜冷却口排出,另一端进入尾缘冷却腔,经由蛇形通过多流程肋片换热后,尾缘劈缝冷却出流孔流出,很大程度地提高了涡轮内部冷气结构的冷却效率,增加了涡轮的使用寿命。

Patent Agency Ranking