-
公开(公告)号:CN102231910A
公开(公告)日:2011-11-02
申请号:CN201110173438.6
申请日:2011-06-24
Applicant: 哈尔滨工业大学
IPC: H04W64/00
Abstract: 无线传感器网络中基于粒子束优化的支持向量机的定位方法,涉及一种应用于无线传感器网络中的定位方法。本发明解决了现有定位方法中存在的定位精度低、计算开销大、需要硬件支持的缺点。本发明所基于的无线传感器网络包括多个可通过信号强度测量距离的传感器节点、可收集全部节点信息并计算的网关;应用于上述无线传感器网络中的基于粒子束优化的支持向量机的定位方法为:采用统计学习的方法,结合粒子束优化理论和支持向量机理论,对网络中的待测节点进行定位。本发明利用粒子束优化和支持向量机的方法提高传感器节点自身的定位精度,当网络中存在噪声干扰时,仍能得到良好的定位效果。本发明适用于基于各种应用的集中式无线传感器网络中的定位。
-
公开(公告)号:CN102231910B
公开(公告)日:2014-06-04
申请号:CN201110173438.6
申请日:2011-06-24
Applicant: 哈尔滨工业大学
IPC: H04W64/00
Abstract: 无线传感器网络中基于粒子束优化的支持向量机的定位方法,涉及一种应用于无线传感器网络中的定位方法。本发明解决了现有定位方法中存在的定位精度低、计算开销大、需要硬件支持的缺点。本发明所基于的无线传感器网络包括多个可通过信号强度测量距离的传感器节点、可收集全部节点信息并计算的网关;应用于上述无线传感器网络中的基于粒子束优化的支持向量机的定位方法为:采用统计学习的方法,结合粒子束优化理论和支持向量机理论,对网络中的待测节点进行定位。本发明利用粒子束优化和支持向量机的方法提高传感器节点自身的定位精度,当网络中存在噪声干扰时,仍能得到良好的定位效果。本发明适用于基于各种应用的集中式无线传感器网络中的定位。
-