-
公开(公告)号:CN110764064A
公开(公告)日:2020-02-07
申请号:CN201911089194.6
申请日:2019-11-08
Applicant: 哈尔滨工业大学
Abstract: 基于深度卷积神经网络集成的雷达干扰信号识别方法,属于雷达信号识别领域,本发明为解决采用现有深度学习模型识别雷达信号存在过拟合、模型泛化能力差,导致识别系统识别准确率低、鲁棒性弱的问题。本发明方法包括以下步骤:步骤一、将雷达干扰信号时域数据集划分为训练集、验证集以及测试集三部分;步骤二、对训练集X做有放回的随机采样T次,获得T个相互独立的采样训练集;步骤三、采用一维CNN卷积神经网络作为特征提取器、采用支持向量机作为分类器来构造个体学习器,根据步骤二的T个采样训练集来训练T个个体学习器以构造同质集成,构建模型;步骤四、将待测雷达干扰信号输入至步骤三的模型中进行识别。