-
公开(公告)号:CN118859225A
公开(公告)日:2024-10-29
申请号:CN202410900150.1
申请日:2024-07-05
IPC: G01S17/32 , G01S17/34 , G06F18/2131 , G06F17/10
Abstract: FMCW激光雷达测距系统及目标距离提取方法,属于雷达数据处理技术领域。解决了现有FMCW激光雷达测距方法存在精确度差的问题。本发明的半导体激光器发射激光信号;激光信号分别入射至测量干涉仪和辅助干涉仪;测量干涉仪用于通过光纤经镜头对目标距离进行测量,获取测量干涉信号;辅助干涉仪用于产生参考干涉信号;将测量干涉信号和参考干涉信号分别进行光电转换后经数据采集卡上传至计算机,计算出参考干涉信号相位,获取测量干涉信号频谱峰值点索引和幅值,利用所述频谱峰值点索引和幅值,采用非线性核函数结合梯度上升算法,获取测量干涉信号精确峰值点频率,再计算目标距离。本发明适用于雷达信号处理。
-
公开(公告)号:CN117970346A
公开(公告)日:2024-05-03
申请号:CN202410177295.3
申请日:2024-02-08
Applicant: 哈尔滨工业大学
Abstract: 一种基于距离谱信号重构的双扫高精度测距方法,属于激光干涉测距领域。本发明针对双扫扫频干涉测距方法中为了抵消多普勒频移将干涉信号相乘而导致的信号信噪比降低问题。包括:基于双扫FMCW结构,首先获取上扫和下扫激光器对应的辅助和测量干涉信号,然后对辅助干涉信号进行解相位,通过NUDFT分别求取含有多普勒信息的距离谱;然后索引只含有多普勒信息的距离谱范围,并利用索引得到的距离谱信息基于DSR算法分别构造出已消除由于非线性展宽引入噪声量的干涉测量信号,最终将重新构造的测量信号相乘并和相乘之后的辅助信号进行NUDFT,求解得到高精度距离信息。本发明用于高精度测距。
-
公开(公告)号:CN114660091B
公开(公告)日:2023-04-25
申请号:CN202210277608.3
申请日:2022-03-21
Applicant: 哈尔滨工业大学
IPC: G01N21/958 , G01N21/01 , G02B27/10
Abstract: 集束装置终端光学组件成像系统及方法,涉及大口径光学元件在线成像系统设计领域,本发明的目的是为了解决目前对单束终端光学组件的成像检测速度慢的问题。光学组件由8个子束按口字型排列组成,成像物镜采集光学组件的像,将采集到的像输出至分光棱镜,第一组子束的像经过分光棱镜透射到对应的4块探测芯片上,同时第二组子束的像或者第三组子束的像经过分光棱镜反射到另外所述2块探测芯片上,将成像物镜、分光棱镜和图像探测器一同绕光轴顺时针线旋转90°后,第三组子束的像或者第二组子束的像经过分光棱镜反射到所述另外2块探测芯片上,图像探测器完成对8个子束图像的全部采集。它用于对光学组件成像进行采集。
-
公开(公告)号:CN115235603A
公开(公告)日:2022-10-25
申请号:CN202210832505.9
申请日:2022-07-14
Applicant: 哈尔滨工业大学
IPC: G01H9/00
Abstract: 一种校正激光多普勒测振仪中动态非线性误差的方法,属于激光振动测试领域。本发明针对现有对于时变的多径干扰采用分段Heydemann校正方法消除非线性误差,测量结果准确性差的问题。包括:对多径干扰下的原始测量信号和参考信号进行正交解调,获得正交信号表达式;对多径干扰项进行泰勒展开,去除泰勒展开余项得到多径干扰项的简化表达式;再对正交信号表达式进行变形,根据变形后的正交信号表达式得到李萨如曲线表达式;利用最小二乘法进行螺旋校正拟合,获得李萨如曲线表达式中6个设定变量计算结果;再计算得到消除多径干扰后的解调相位计算结果,计算获得测量目标振动引起的距离变化,实现非线性校正。本发明实现了测量结果中的非线性误差校正。
-
公开(公告)号:CN112051583B
公开(公告)日:2022-06-14
申请号:CN202010875823.4
申请日:2020-08-25
Applicant: 哈尔滨工业大学
Abstract: 一种FMCW距离测量系统中拍频信号非线性校正方法,解决了现有借助辅助干涉仪比相的非线性校正受调频非线性的影响导致信噪比低的问题,属于信号处理技术领域。本发明包括:S1、对辅助干涉仪的信号进行希尔伯特变换,获得辅助干涉仪信号的相位信息,利用该相位信息获取用于非线性校正的正交基,该正交基包含调频非线性信息;S2、对测量干涉仪信号进行采样,利用S1中的正交基对测量干涉仪信号进行变换,完成非线性校正。本发明采用辅助干涉仪对光源信号进行采样,利用辅助干涉仪的信号作为谱分析方法中使用的正交基,代替原有的线性相位正交基对测量路信号进行谱分析,可以有效的消除调频非线性以及光源跳模带来的影响。
-
公开(公告)号:CN112964197B
公开(公告)日:2022-04-29
申请号:CN202110307642.6
申请日:2021-03-23
Applicant: 哈尔滨工业大学
IPC: G01B11/24
Abstract: 本发明的基于负反馈锁相振动抑制的微小球体表面形貌检测装置,涉及一种光学小球表面检测装置,目的是为了克服现有时域移相点衍射干涉测量方法对于环境振动引入的随机误差较为敏感,存在一定量的残余误差的问题,包括第一激光器、第二激光器、第一λ/2波片、第二λ/2波片、第三λ/2波片、直角反射镜、偏振分光棱镜、第一角锥棱镜、第二角锥棱镜、第三角锥棱镜、锁相移相器、平面反射镜、第一二向色镜、4f系统、第一显微物镜、针孔反射镜、D形反射镜、第一准直透镜、λ/4波片、第二显微物镜、被测微球、第二准直透镜、检偏器、第二二向色镜、第一单色滤光片、面阵相机、第二单色滤光片和随机移相量检测装置。
-
公开(公告)号:CN112902833B
公开(公告)日:2022-02-18
申请号:CN202110240950.1
申请日:2021-03-04
Applicant: 哈尔滨工业大学
IPC: G01B9/02
Abstract: 抗振式短相干时空混合移相斐索干涉仪,涉及光学检测空间物体表面三维信息的技术领域。本发明解决了时域移相式斐索干涉仪受环境振动等随机误差源影响严重的问题。本发明包括短相干激光器、第一λ/2波片、偏振分光棱镜、第一角锥棱镜、移相器、第二角锥棱镜、延迟平台、显微物镜、微小针孔、分光平片、第一准直镜、标准参考镜、第二准直镜、第一分光棱镜、4f系统、第三角锥棱镜、第四角锥棱镜、第二λ/2波片、分光棱镜组、波片组、检偏器和面阵相机;采用短相干光路结构结合时空混合移相方式,充分发挥时域移相和空域移相的优势,大幅度提高其在振动环境下的检测性能。本发明的主要用于采集被测样品的干涉图样。
-
公开(公告)号:CN112946611A
公开(公告)日:2021-06-11
申请号:CN202110154331.0
申请日:2021-02-04
Applicant: 哈尔滨工业大学
IPC: G01S7/497 , G01S7/4861 , G01S17/08
Abstract: 基于相似三角插值采样的扫频非线性矫正测距方法,涉及扫频干涉测量(FSI)测量、FMCW激光雷达等技术领域,针对现有方法不能提供准确的重采样序列,扫频非线性消除不彻底、导致扫频干涉测量精度下降的问题,本申请用于消除由于扫频激光器的扫频非线性产生的频谱展宽效应,可有效提高测量频谱半高全宽的优良性质。尤其是对于测量极限距离时,相比于取近零点作为采样点,误差更小。同时,相似插值算法因使用矩阵乘法在信号处理速度上有所加快。该发明确保了绝对距离测量系统在进行远距离测量时测量结果的高精度、高实时性处理。
-
公开(公告)号:CN104330027B
公开(公告)日:2017-04-12
申请号:CN201410658169.6
申请日:2014-11-18
Applicant: 哈尔滨工业大学
Abstract: 一种基于误差互补修正的移相干涉测量位相提取方法,本发明涉及基于误差互补修正的移相干涉测量位相提取方法。本发明的目的是为了解决(1)现有线性移相误差普遍存在于各类干涉系统中,影响位相信息提取精度;(2)现有线性误差超过5%时,位相提取误差急剧增大;(3)以及现有公式繁琐,运算量大,包含乘方开方运算,易出现虚数位相解和超大误差点的奇异位相解情况的问题。具体是按照以下步骤进行的:步骤一、传统五帧算法表达形式;步骤二、采用与传统五帧算法相同帧序的光强,代入构造的新五帧算法,得到新五帧算法的位相信息,构造的五帧算法形式;步骤三、构造了误差互补五帧算法。本发明应用于光学检测空间物体三维形貌的技术领域。
-
公开(公告)号:CN103162616B
公开(公告)日:2015-09-16
申请号:CN201310071146.0
申请日:2013-03-06
Applicant: 哈尔滨工业大学
Abstract: 用于微球表面形貌检测的瞬时移相干涉测量仪及采用该测量仪实现微球表面形貌的测量方法,涉及光学检测空间物体三维形貌领域。本发明解决了现有同类技术检测效率低、横向分辨能力差、孤立缺陷点容易遗漏、参考面制造困难且精度低等问题。参考光经单模光纤传递给光纤准直器,准直后形成入射参考光束;测量光束经透射后形成与入射参考光束垂直的入射测量光束,入射参考光束和入射测量光束入射第三偏振分光棱镜后合束,依次经第四、第五偏振分光棱镜分成四束平行光束,四束平行光束经波片阵列分别加入不同的移相量后在面阵CCD上形成四个光斑。本测量方法是通过对四个光斑进行图像处理获得被测微球的球面形貌。本发明适用于微球表面形貌的快速检测。
-
-
-
-
-
-
-
-
-