一种基于多图神经网络协同学习架构的显著性物体检测装置及方法

    公开(公告)号:CN115063352A

    公开(公告)日:2022-09-16

    申请号:CN202210569783.X

    申请日:2022-05-24

    Abstract: 本发明是一种基于多图神经网络协同学习架构的显著性物体检测装置及方法。本发明涉及计算机视觉技术领域,确定显著性边缘特征与显著性区域特征,将显著性边缘特征与显著性区域特征分别通过图投影操作转化为边缘图节点与区域图节点;进行初始图交互,实现图间信息的传递;将交互之后的送入动态信息增强图卷积层,完成图节点信息的充分挖掘;将经过动态信息增强图卷积层处理之后的边缘图节点与区域图节点送入注意力感知融合模块,完成两种特征的互补融合,为显著性边缘特征与显著性区域特征的学习过程提供互补线索。本发明提升显著性物体检测性能,弥补传统卷积神经网络的关系学习能力不足的问题。

Patent Agency Ranking