-
公开(公告)号:CN114862159A
公开(公告)日:2022-08-05
申请号:CN202210432327.0
申请日:2022-04-22
Applicant: 同济大学
Abstract: 本发明涉及一种自动驾驶测试场景的评价方法,包括:基于强化学习、深度强化学习、逆强化学习三种方法,生成自动驾驶测试场景集;基于所生成的测试场景的实际数据,针对所生成的测试场景是否嵌入被测系统,选取出三个评价维度;基于三个评价维度,构建具体的评价指标并进行量化评估;对评价指标的量化评估结果进行归一化处理,通过确定权重,计算得到综合评价结果。与现有技术相比,本发明从无被测系统嵌入的场景智能性、有被测系统嵌入的场景测试性、被测系统嵌入前后场景的稳定性这三个评价维度出发,构建面向自动驾驶测试场景的评价框架和指标,能够平行对比测试场景综合性能高低,从而加快自动驾驶测试进程,具有极大的应用价值。
-
公开(公告)号:CN114862159B
公开(公告)日:2024-09-06
申请号:CN202210432327.0
申请日:2022-04-22
Applicant: 同济大学
IPC: G06Q10/063 , G06N20/00
Abstract: 本发明涉及一种自动驾驶测试场景的评价方法,包括:基于强化学习、深度强化学习、逆强化学习三种方法,生成自动驾驶测试场景集;基于所生成的测试场景的实际数据,针对所生成的测试场景是否嵌入被测系统,选取出三个评价维度;基于三个评价维度,构建具体的评价指标并进行量化评估;对评价指标的量化评估结果进行归一化处理,通过确定权重,计算得到综合评价结果。与现有技术相比,本发明从无被测系统嵌入的场景智能性、有被测系统嵌入的场景测试性、被测系统嵌入前后场景的稳定性这三个评价维度出发,构建面向自动驾驶测试场景的评价框架和指标,能够平行对比测试场景综合性能高低,从而加快自动驾驶测试进程,具有极大的应用价值。
-