一种基于卷积神经网络农作物病害图像识别方法

    公开(公告)号:CN111414896A

    公开(公告)日:2020-07-14

    申请号:CN202010280895.4

    申请日:2020-04-10

    Abstract: 本发明公开了一种基于卷积神经网络农作物病害图像识别方法,包括如下步骤:S1、基于无人机定时定点的进行农作物图像的采集;S2、读取农作物图像内载的POS数据,并基于Faster R-CNN模型实现农作物图像中病害区域的检测定位,生成病害区图像集;S3、基于DSSD_Xception_coco模型实现病害区图像中孔洞、斑点、害虫轨迹等的检测识别;S4、基于孔洞、斑点、害虫轨迹等的检测识别结果及其对应的病害区图像的POS数据输出病害识别结果,并完成各区域的病害情况统计。本发明实现了农作物病害的自动检测、识别和统计分析,进而提供对应的防治方案,为提高农作物病害预警奠定基础。

Patent Agency Ranking