基于非接触式检测的弧齿锥齿轮加工用模具磨损预测方法

    公开(公告)号:CN109446470A

    公开(公告)日:2019-03-08

    申请号:CN201811367351.0

    申请日:2018-11-16

    Applicant: 厦门大学

    Abstract: 基于非接触式检测的弧齿锥齿轮加工用模具磨损预测方法,涉及弧齿锥齿轮加工。建立激光位移传感器在任意安装位姿下引入安装倾角误差的数学模型;修正激光位移传感器安装倾角,完成对弧齿锥齿轮检测项的标定实验,建立物面倾角误差补偿模型;用改进的支持向量机算法建立锻压模具磨损量与锻压件数的关系模型;用自迭代支持向量机算法预测弧齿锥齿轮加工用模具磨损程度。通过精密测量弧齿锥齿轮检测项,用自迭代支持向量机预测算法建立锻压模具磨损程度与锻压件数的关系,实现对弧齿锥齿轮加工用模具磨损的检测和预测。

    高硬度材料面齿轮展成电解大余量去除方法及加工装置

    公开(公告)号:CN114473089B

    公开(公告)日:2024-09-03

    申请号:CN202111536798.8

    申请日:2021-12-15

    Abstract: 高硬度材料面齿轮展成电解大余量去除方法及加工装置,属于电解加工技术领域。以阴极作为刀具,应用展成对滚运动电解法电解加工面齿轮,将阴极廓形设计为圆柱齿轮廓形,模拟面齿轮与圆柱齿轮啮合对滚运动,面齿轮电解过程中,通过控制工艺参数去除面齿轮毛坯大部分余量。设计阴极系统,展成法阴极系统包括阴极刀具和组合式绝缘刀柄。电解过程中,电流通过导电滑环正向导入阴极工具,在逆向由于受绝缘环的影响不通电,杜绝杂散电流漏电对主轴系统造成的影响。导线连接到旋转部件上,在阳极工装上安装电滑环装置。高质高效电解加工以提高后续精加工的精度和效率。对提高国内高速高动力航空驱动系统关键部件面齿轮的加工精度和效率具有重要意义。

    基于非接触式检测的弧齿锥齿轮加工用模具磨损预测方法

    公开(公告)号:CN109446470B

    公开(公告)日:2020-07-31

    申请号:CN201811367351.0

    申请日:2018-11-16

    Applicant: 厦门大学

    Abstract: 基于非接触式检测的弧齿锥齿轮加工用模具磨损预测方法,涉及弧齿锥齿轮加工。建立激光位移传感器在任意安装位姿下引入安装倾角误差的数学模型;修正激光位移传感器安装倾角,完成对弧齿锥齿轮检测项的标定实验,建立物面倾角误差补偿模型;用改进的支持向量机算法建立锻压模具磨损量与锻压件数的关系模型;用自迭代支持向量机算法预测弧齿锥齿轮加工用模具磨损程度。通过精密测量弧齿锥齿轮检测项,用自迭代支持向量机预测算法建立锻压模具磨损程度与锻压件数的关系,实现对弧齿锥齿轮加工用模具磨损的检测和预测。

    一种基于数字图形扫描的整体立铣刀开槽方法

    公开(公告)号:CN108907900A

    公开(公告)日:2018-11-30

    申请号:CN201810640194.X

    申请日:2018-06-21

    Applicant: 厦门大学

    Abstract: 一种基于数字图形扫描的整体立铣刀开槽方法,1)确定刀具的结构几何参数;2)确定磨削加工用砂轮的结构几何参数;3)对刀具与砂轮进行空间坐标转换,并按照相应的安装参数调整;4)根据砂轮磨削刀具工件的加工轨迹及仿真,完成包络图的绘制;5)利用DSG扫描法对容屑槽曲面的包络图像进行像素提取,获得刀具容屑槽的廓形曲线;6)对所提取的刀具容屑槽廓形曲线进行拟合,拟合后计算刀具前角;7)重复3)~6),获得安装位置与刀具前角的数据点,再使用最小二乘法进行拟合;8)加工时,依据生产需求的前角,代入步骤7)获得的拟合曲线方程,计算出安装位置,即进行开槽加工的NC代码生成,由NC程序控制磨床进行开槽磨削加工。

    高硬度材料内花键展成电解去除大余量的方法及加工装置

    公开(公告)号:CN113210773A

    公开(公告)日:2021-08-06

    申请号:CN202110590457.2

    申请日:2021-05-28

    Abstract: 高硬度材料内花键展成电解去除大余量的方法及加工装置,涉及内花键大余量去除工艺技术。采用高频、超短脉冲电源,通过阴极刀具对阳极工件的相互展成运动进行电解加工,实现内花键工件的大余量粗加工;阴极刀具与阳极工件之间保持一定的加工间隙,加工间隙的大小为电解间隙与精加工余量之和,以电解加工到所要求的内花键深度;控制系统控制阴极刀具与阳极工件的位置以及运动轨迹,实现加工间隙的在线监测与自适应控制,保证加工精度。装置包括机械运动机构、控制系统、脉冲电源、电解液供给系统。降低加工成本,提高加工精度,实现高硬度材料、特殊结构内花键的大余量粗加工,为后续插齿精加工、保证内花键精度做准备。

    一种基于数字图形扫描的整体立铣刀开槽方法

    公开(公告)号:CN108907900B

    公开(公告)日:2019-08-20

    申请号:CN201810640194.X

    申请日:2018-06-21

    Applicant: 厦门大学

    Abstract: 一种基于数字图形扫描的整体立铣刀开槽方法,1)确定刀具的结构几何参数;2)确定磨削加工用砂轮的结构几何参数;3)对刀具与砂轮进行空间坐标转换,并按照相应的安装参数调整;4)根据砂轮磨削刀具工件的加工轨迹及仿真,完成包络图的绘制;5)利用DSG扫描法对容屑槽曲面的包络图像进行像素提取,获得刀具容屑槽的廓形曲线;6)对所提取的刀具容屑槽廓形曲线进行拟合,拟合后计算刀具前角;7)重复3)~6),获得安装位置与刀具前角的数据点,再使用最小二乘法进行拟合;8)加工时,依据生产需求的前角,代入步骤7)获得的拟合曲线方程,计算出安装位置,即进行开槽加工的NC代码生成,由NC程序控制磨床进行开槽磨削加工。

    一种点激光位移传感器测量误差校对的实验方法及装置

    公开(公告)号:CN109269422B

    公开(公告)日:2024-05-14

    申请号:CN201811368682.6

    申请日:2018-11-16

    Applicant: 厦门大学

    Abstract: 一种点激光位移传感器测量误差校对的实验方法及装置,涉及点激光位移传感器。实验装置设有激光干涉仪、光路组件、六自由度固定架、点激光位移传感器、正弦规、分度盘、标准量块和数控加工中心。构建了点激光位移传感器测量物面时的入射倾角、转角转角和入射摆角数学模型,推导出三者关系,为点激光位移传感器误差校对提供了理论支持。基于数学模型,搭建了误差校对实验装置,操作简单,针对性强,可以极大简化实验工作量。对实验结果进行了误差分析,得到了入射倾角、入射转角、入射摆角三个测量因素对测量误差的影响规律,为基于点激光位移传感器的工件非接触快速、精确检测技术提供保障。

    一种基于激光位移传感器的测量系统中心标定方法

    公开(公告)号:CN109357631B

    公开(公告)日:2020-02-18

    申请号:CN201811459122.1

    申请日:2018-11-30

    Applicant: 厦门大学

    Abstract: 一种基于激光位移传感器的测量系统中心标定方法,涉及光学精密检测领域。搭建四坐标激光测量系统平台,将激光位移传感器与现有四坐标测量系统相结合,成为四坐标激光测量系统,该四坐标激光测量系统包括直线轴X轴、Y轴、Z轴以及回转轴C轴,激光位移传感器安装在X轴末端;分析激光位移传感器误差校对的因素;求解入射倾角和入射转角两个角与入射摆角关系;激光位移传感器测量误差校对实验;标准棒圆心测量;四坐标激光测量系统的中心坐标及误差补偿分析。

    一种基于激光位移传感器的测量系统中心标定方法

    公开(公告)号:CN109357631A

    公开(公告)日:2019-02-19

    申请号:CN201811459122.1

    申请日:2018-11-30

    Applicant: 厦门大学

    Abstract: 一种基于激光位移传感器的测量系统中心标定方法,涉及光学精密检测领域。搭建四坐标激光测量系统平台,将激光位移传感器与现有四坐标测量系统相结合,成为四坐标激光测量系统,该四坐标激光测量系统包括直线轴X轴、Y轴、Z轴以及回转轴C轴,激光位移传感器安装在X轴末端;分析激光位移传感器误差校对的因素;求解入射倾角和入射转角两个角与入射摆角关系;激光位移传感器测量误差校对实验;标准棒圆心测量;四坐标激光测量系统的中心坐标及误差补偿分析。

Patent Agency Ranking