一种基于深度学习的钢轨裂纹定量涡流检测方法和装置以及设备

    公开(公告)号:CN115629124A

    公开(公告)日:2023-01-20

    申请号:CN202211075461.6

    申请日:2022-09-02

    Applicant: 厦门大学

    Abstract: 本发明公开了一种基于深度学习的钢轨裂纹定量涡流检测方法和装置以及设备,包括:采集裂纹涡流响应,建立第一信号曲线;计算裂纹倾角,并对称化转换第一信号曲线,输出第二信号曲线;将第二信号曲线导入垂直裂纹深度学习模型,基于分析结果重构斜裂纹并确定斜裂纹深度和宽度。为了使垂直裂纹信号曲线数据集训练出的深度学习模型能用于斜裂纹的定量检测,将不对称的斜裂纹信号曲线对称化转换成对称曲线。在获得斜裂纹的对称化信号曲线后,使用训练好的垂直裂纹深度学习模型对对称信号曲线的数据进行反演,获得斜裂纹的剖面轮廓曲线,进而计算斜裂纹的宽度和垂直深度。

Patent Agency Ranking