一种基于随机森林模型的拉曼光谱物质识别方法

    公开(公告)号:CN109142317B

    公开(公告)日:2020-05-08

    申请号:CN201810996426.5

    申请日:2018-08-29

    Applicant: 厦门大学

    Abstract: 本发明涉及一种拉曼光谱物质识别方法,该方法包括:S100:选择多个样本,生成样本的拉曼谱图数据集,并对其中所有的拉曼谱图进行预处理,即自动消除影响谱图分析准确度的因素;S200:对预处理后的所有的拉曼谱图进行样本特征提取,所述样本特征为适用于随机森林模型的特征向量;S300:根据拉曼谱图数据集和提取的样本特征建立多个随机森林模型;S400:从多个随机森林模型中选择最优的随机森林模型,使用其来判断待测样本归属的目标物质类别。本发明将拉曼谱图的物质识别(定性分析)问题转换为机器学习的分类问题,并实现批量实时处理,在保证高准确率的基础上,大大提高了运行速度。

    一种基于随机森林模型的拉曼光谱物质识别方法

    公开(公告)号:CN109142317A

    公开(公告)日:2019-01-04

    申请号:CN201810996426.5

    申请日:2018-08-29

    Applicant: 厦门大学

    Abstract: 本发明涉及一种拉曼光谱物质识别方法,该方法包括:S100:选择多个样本,生成样本的拉曼谱图数据集,并对其中所有的拉曼谱图进行预处理,即自动消除影响谱图分析准确度的因素;S200:对预处理后的所有的拉曼谱图进行样本特征提取,所述样本特征为适用于随机森林模型的特征向量;S300:根据拉曼谱图数据集和提取的样本特征建立多个随机森林模型;S400:从多个随机森林模型中选择最优的随机森林模型,使用其来判断待测样本归属的目标物质类别。本发明将拉曼谱图的物质识别(定性分析)问题转换为机器学习的分类问题,并实现批量实时处理,在保证高准确率的基础上,大大提高了运行速度。

    用深度森林在复杂环境中识别目标物的拉曼光谱分析方法

    公开(公告)号:CN109858477A

    公开(公告)日:2019-06-07

    申请号:CN201910104046.0

    申请日:2019-02-01

    Applicant: 厦门大学

    Abstract: 本发明涉及一种用深度森林在复杂环境中识别目标物的拉曼光谱分析方法,该方法包括:选择多个类别已知的样本,生成样本的拉曼谱图集,并对其中所有的拉曼谱图进行预处理,并把预处理后的拉曼谱图设为原始特征向量;深度森林模型的建立:使用多粒度扫描算法将原始特征向量转换为变换特征向量;样本分为训练集和验证集,通过训练集的样本逐级建立级联森林后,通过验证集的样本进行级联森林性能的判断,直至深度森林模型的分类准确率不再随着级联森林的级数增加而增加时,深度森林模型建立完成;通过深度森林模型对待测物质的拉曼谱图进行分类。本发明能从多种测试体系的拉曼光谱中准确识别所含的目标物质,且具有通用性、可扩展性和可伸缩性。

Patent Agency Ranking