一种基于曲线参数化的涡轮叶片气膜孔形位参数修正方法

    公开(公告)号:CN107288690B

    公开(公告)日:2019-02-05

    申请号:CN201710548967.7

    申请日:2017-07-07

    Abstract: 一种基于曲线参数化的涡轮叶片气膜孔形位参数修正方法,获取涡轮叶片实际铸造模型;对模型与叶片设计模型配准,根据叶片表面高度,等比例截取截面曲线,再将叶片截面曲线分解为四部分;求解叶片设计模型截面曲线的中弧线;根据气膜孔设计形位参数:中心点坐标求解该点对应的与叶片截面曲线相切的内切圆圆心点;求解圆心点在中弧线上对应的参数;求解叶片铸造模型截面曲线中弧线上对应参数u的点;求解切点,选取对应部位的切点,连接圆心点与气膜孔中心点,连接内切圆圆心点与气膜孔中心点,求解两条连线夹角;位于前后缘部位的气膜孔,以分界点为基准点,对缘头曲线处理,对应参数u相同的点为对应点,求解连线夹角为气膜孔方向变化。

    一种用于飞秒激光烧蚀仿真的激光源模型的建立方法

    公开(公告)号:CN108875264A

    公开(公告)日:2018-11-23

    申请号:CN201810735323.3

    申请日:2018-07-06

    Abstract: 本发明提供了一种用于飞秒激光烧蚀仿真的激光源模型的建立方法,根据激光在空间上和时间上的分布得出焦点下移的激光源模型,所提出的激光源三维模型可以描述实际加工过程中激光焦点随材料去除而下移的情况,通过在加工平面位置处()将表达式分为两段,保证了在材料表面以上的激光能量密度是符合实际的,且在材料表面以下(即材料内部)能量密度是合理衰减的,所提出的激光源三维模型还可以描述实际加工过程中激光焦点在材料平面上的螺旋运动。

    一种精铸涡轮叶片气膜冷却孔的参数化加工方法

    公开(公告)号:CN107506519A

    公开(公告)日:2017-12-22

    申请号:CN201710548930.4

    申请日:2017-07-07

    Abstract: 一种精铸涡轮叶片气膜冷却孔的参数化加工方法,涉及涡轮叶片。提供包括组件铸造变形、装夹定位误差以及小孔加工过程中叶片的移动及变形在内的误差,可实现空心涡轮叶片气膜孔的参数化精确加工。通过求解与计算气膜孔加工过程中的误差传递与积累,对气膜孔的设计参数修正,根据修正后的气膜孔形位参数:气膜孔的中心点,气膜孔的法矢,与气膜孔的孔深,对气膜孔进行加工,提高气膜孔的加工精度,提高涡轮叶片的冷却效率。对空心涡轮叶片的精确成形具有重要的理论意义和应用价值,避免了当前气膜孔加工领域由于仅根据设计参数直接加工而造成的气冷效率降低现状,保证了保证了气膜孔成形精度,可实现叶片气冷效果与设计要求保持一致。

    一种用于飞秒激光烧蚀仿真的激光源模型的建立方法

    公开(公告)号:CN108875264B

    公开(公告)日:2021-06-15

    申请号:CN201810735323.3

    申请日:2018-07-06

    Abstract: 本发明提供了一种用于飞秒激光烧蚀仿真的激光源模型的建立方法,根据激光在空间上和时间上的分布得出焦点下移的激光源模型,所提出的激光源三维模型可以描述实际加工过程中激光焦点随材料去除而下移的情况,通过在加工平面位置处()将表达式分为两段,保证了在材料表面以上的激光能量密度是符合实际的,且在材料表面以下(即材料内部)能量密度是合理衰减的,所提出的激光源三维模型还可以描述实际加工过程中激光焦点在材料平面上的螺旋运动。

    一种精铸涡轮叶片气膜冷却孔的参数化加工方法

    公开(公告)号:CN107506519B

    公开(公告)日:2020-07-03

    申请号:CN201710548930.4

    申请日:2017-07-07

    Abstract: 一种精铸涡轮叶片气膜冷却孔的参数化加工方法,涉及涡轮叶片。提供包括组件铸造变形、装夹定位误差以及小孔加工过程中叶片的移动及变形在内的误差,可实现空心涡轮叶片气膜孔的参数化精确加工。通过求解与计算气膜孔加工过程中的误差传递与积累,对气膜孔的设计参数修正,根据修正后的气膜孔形位参数:气膜孔的中心点,气膜孔的法矢,与气膜孔的孔深,对气膜孔进行加工,提高气膜孔的加工精度,提高涡轮叶片的冷却效率。对空心涡轮叶片的精确成形具有重要的理论意义和应用价值,避免了当前气膜孔加工领域由于仅根据设计参数直接加工而造成的气冷效率降低现状,保证了保证了气膜孔成形精度,可实现叶片气冷效果与设计要求保持一致。

    一种基于曲线参数化的涡轮叶片气膜孔形位参数修正方法

    公开(公告)号:CN107288690A

    公开(公告)日:2017-10-24

    申请号:CN201710548967.7

    申请日:2017-07-07

    CPC classification number: F01D5/186 G06F17/5086

    Abstract: 一种基于曲线参数化的涡轮叶片气膜孔形位参数修正方法,获取涡轮叶片实际铸造模型;对模型与叶片设计模型配准,根据叶片表面高度,等比例截取截面曲线,再将叶片截面曲线分解为四部分;求解叶片设计模型截面曲线的中弧线;根据气膜孔设计形位参数:中心点坐标求解该点对应的与叶片截面曲线相切的内切圆圆心点;求解圆心点在中弧线上对应的参数;求解叶片铸造模型截面曲线中弧线上对应参数u的点;求解切点,选取对应部位的切点,连接圆心点与气膜孔中心点,连接内切圆圆心点与气膜孔中心点,求解两条连线夹角;位于前后缘部位的气膜孔,以分界点为基准点,对缘头曲线处理,对应参数u相同的点为对应点,求解连线夹角为气膜孔方向变化。

    一种空心涡轮叶片精铸模具设计收缩率的确定方法

    公开(公告)号:CN107577874B

    公开(公告)日:2019-07-19

    申请号:CN201710794886.5

    申请日:2017-09-06

    Applicant: 厦门大学

    Abstract: 一种空心涡轮叶片精铸模具设计收缩率的确定方法,涉及空心涡轮叶片精铸模具。特别适用于空心涡轮叶片精铸外形模具型腔的设计。用有限元方法获取空心叶片的变形模型,通过在叶片变形模型与设计模型上截取一系列二维横截面,并将截面线离散成点,获取对应点之间的距离建立二维位移场;分离位移场中包含的弯扭变形与收缩变形。对叶片内外形截面进行直线连接处理后识别叶片受阻与非受阻结构,然后计算空心叶片的壁厚,通过计算不同结构的收缩率,建立非线性的收缩率分布。最后对收缩率模型进行三次多项式的最小二乘拟合,实现精铸模具设计收缩率的确定。大幅提高涡轮叶片的成品率,减少试模的周期与次数。具有设计周期短、精度高、效率高的特点。

Patent Agency Ranking