-
公开(公告)号:CN112186052A
公开(公告)日:2021-01-05
申请号:CN202011085614.6
申请日:2020-10-12
Applicant: 厦门大学
IPC: H01L31/0352 , H01L31/108 , H01L31/18
Abstract: 本发明涉及一种高外量子效率的深紫外多波长MSM窄带光电探测器及其制备方法。所述的光电探测器包括衬底、缓冲层、至少两组超短周期超晶格层、金属叉指电极,每组超短周期超晶格层的分子层数不同;超短周期超晶格层的上表面沉积金属纳米颗粒阵列;不同的超短周期超晶格层对应沉积不同尺寸、形状及周期的金属纳米颗粒阵列;金属叉指电极设置在超短周期超晶格层上表面,形成肖特基接触。本发明通过将多组不同尺寸、形状及周期的金属纳米颗粒阵列设置在超短周期超晶格层上,能够针对超短周期超晶格层的特定窄带光吸收进行有效地局域表面等离激元增强,进一步提高对深紫外光的吸收效率,最终改善多波长MSM窄带探测器的响应度和外量子效率。
-
公开(公告)号:CN110364584A
公开(公告)日:2019-10-22
申请号:CN201910577036.9
申请日:2019-06-28
Applicant: 厦门大学
IPC: H01L31/0352 , H01L31/108 , H01L31/18 , G02B5/00 , B82Y30/00
Abstract: 本发明提供基于局域表面等离激元效应的深紫外MSM探测器及制备方法,其结构从下至上包括:衬底、缓冲层、超短周期超晶格及金属电极;超短周期超晶格包括设置在超短周期超晶格的纳米孔阵,以及金属纳米颗粒;金属纳米颗粒注入在纳米孔阵空隙或沉积于超短周期超晶格上表面,颗粒尺寸可调控;金属电极设置在超短周期超晶格上,形成肖特基接触。本发明通过在有序分布的纳米孔阵中形成金属纳米颗粒再在其上设置金属电极,避免了超短周期超晶格吸收层载流子隧穿能力较弱问题,又利用产生的局域表面等离激元效应,增强深紫外光的吸收,最终提高深紫外MSM探测器的量子效率。
-
公开(公告)号:CN210245515U
公开(公告)日:2020-04-03
申请号:CN201921000730.6
申请日:2019-06-28
Applicant: 厦门大学
IPC: H01L31/0352 , H01L31/108 , H01L31/18 , G02B5/00 , B82Y30/00
Abstract: 本实用新型提供一种基于局域表面等离激元效应的深紫外MSM探测器,其结构从下至上包括:衬底、缓冲层、超短周期超晶格及金属电极;超短周期超晶格包括设置在超短周期超晶格的纳米孔阵,以及金属纳米颗粒;金属纳米颗粒注入在纳米孔阵空隙或沉积于超短周期超晶格上表面,颗粒尺寸可调控;金属电极设置在超短周期超晶格上,形成肖特基接触。本实用新型通过在有序分布的纳米孔阵中形成金属纳米颗粒再在其上设置金属电极,避免了超短周期超晶格吸收层载流子隧穿能力较弱问题,又利用产生的局域表面等离激元效应,增强深紫外光的吸收,最终提高深紫外MSM探测器的量子效率。(ESM)同样的发明创造已同日申请发明专利
-
-