-
公开(公告)号:CN112378777B
公开(公告)日:2021-09-03
申请号:CN202011248536.7
申请日:2020-11-10
Applicant: 厦门大学
Abstract: 本发明涉及一种高温低压环境下激光毁伤地面模拟测试系统及方法,该系统包括:高温激光毁伤反应腔、高功率中频感应加热器、多组分供气子系统、真空子系统、高功率光纤耦合激光控制子系统、材料响应测试子系统、水冷子系统和集成控制子系统,本发明采用高温激光毁伤反应腔、多组分供气子系统及真空子系统为被测样品提供低压环境,并可调节环境气氛,通过高功率中频感应加热器以感生电流的方式对高温激光毁伤反应腔内的被测样品加载高温,通过高功率光纤耦合激光控制子系统提供高能的激光照射被测样品,并利用材料响应测试子系统监测被测样品的表面、背面温度,拍摄被测样品表面毁伤程度,能够地面模拟高温低压环境下高能激光打击毁伤热防护材料。
-
公开(公告)号:CN112378776A
公开(公告)日:2021-02-19
申请号:CN202011246388.5
申请日:2020-11-10
Applicant: 厦门大学
Abstract: 本发明涉及一种热防护材料热‑力‑氧‑激光多场耦合地面测试系统及方法,该系统包括:复杂气氛反应腔、感应加热子系统、力学加载子系统、多组分供气子系统、真空抽气子系统、大功率激光加载子系统、材料响应测试子系统、水冷子系统和集成控制子系统,本发明采用复杂气氛反应腔、多组分供气子系统及真空抽气子系统为被测样品提供可调节的环境气氛,通过感应加热子系统对被测样品加载高温,通过力学加载子系统对被测样本加载单轴拉应力,通过大功率激光加载子系统提供高能的激光照射被测样品,并利用材料响应测试子系统监测被测样品的表面、背面温度,被测样品表面形貌变化和应力数据,能够实现热防护材料热‑力‑氧‑激光多场耦合的地面模拟测试。
-
公开(公告)号:CN107249169A
公开(公告)日:2017-10-13
申请号:CN201710398329.1
申请日:2017-05-31
Applicant: 厦门大学
Abstract: 本发明提供车载网络环境下基于雾节点的事件驱动的数据收集方法,包括:(1)车辆节点默认在低成本感知模式下产生感知数据,并把相关数据上传到路边设施,作为雾节点;(2)雾节点接收数据,检查对应的事件的概率、置信度,并判断是否发起“检查事件”的过程;(3)位于上述覆盖区域内的所有车辆节点通过定时器延迟的方式使得其中至少一个车辆节点接受“检查事件”的命令;(4)接受“检查事件”的车辆节点,进入高成本感知模式并进行数据上传;(5)雾节点接收数据并计算事件的发生可能性,与后台ITS系统协同判定事件真伪并进行数据归档。本发明方法明确,效果显著,在准确检测事件的同时能大幅度减少数据收集过程中的传输成本。
-
公开(公告)号:CN110570678B
公开(公告)日:2021-03-19
申请号:CN201910860805.6
申请日:2019-10-23
Applicant: 厦门大学
Abstract: 本发明公开了一种公交车辆从起点到终点总行驶时间预测方法及装置。该方法在时空特征和属性特征等对影响公交车辆总行驶阶段的各种因素进行处理,充分考虑到了影响结果变化的各种因素。采用特征组合的方式对时空特征和属性特征进行组合,并对其中的缺失数据进行处理,以应对实际应用中发生的数据丢失等异常情况,通过ConvLSTM神经网络预测出各站停留时长、各站行驶时长,通过嵌入处理和标准化处理得到外部属性特征。利用各站停留时长、各站行驶时长和所述外部属性在层叠LSTM神经网络对总时长进行准确的预测。本发明提出的方法能够辅助现有公交公司进行调度决策,帮助调度员及时发现晚点车辆,并根据预测结果作出合理的调度决策。
-
公开(公告)号:CN110570678A
公开(公告)日:2019-12-13
申请号:CN201910860805.6
申请日:2019-10-23
Applicant: 厦门大学
Abstract: 本发明公开了一种公交车辆从起点到终点总行驶时间预测方法及装置。该方法在时空特征和属性特征等对影响公交车辆总行驶阶段的各种因素进行处理,充分考虑到了影响结果变化的各种因素。采用特征组合的方式对时空特征和属性特征进行组合,并对其中的缺失数据进行处理,以应对实际应用中发生的数据丢失等异常情况,通过ConvLSTM神经网络预测出各站停留时长、各站行驶时长,通过嵌入处理和标准化处理得到外部属性特征。利用各站停留时长、各站行驶时长和所述外部属性在层叠LSTM神经网络对总时长进行准确的预测。本发明提出的方法能够辅助现有公交公司进行调度决策,帮助调度员及时发现晚点车辆,并根据预测结果作出合理的调度决策。
-
公开(公告)号:CN107249169B
公开(公告)日:2019-10-25
申请号:CN201710398329.1
申请日:2017-05-31
Applicant: 厦门大学
IPC: H04W4/44 , H04W4/46 , H04W4/48 , H04W24/02 , H04W24/06 , H04W24/10 , H04W28/06 , H04W28/18 , H04W48/10 , H04L29/08
Abstract: 本发明提供车载网络环境下基于雾节点的事件驱动的数据收集方法,包括:(1)车辆节点默认在低成本感知模式下产生感知数据,并把相关数据上传到路边设施,作为雾节点;(2)雾节点接收数据,检查对应的事件的概率、置信度,并判断是否发起“检查事件”的过程;(3)位于上述覆盖区域内的所有车辆节点通过定时器延迟的方式使得其中至少一个车辆节点接受“检查事件”的命令;(4)接受“检查事件”的车辆节点,进入高成本感知模式并进行数据上传;(5)雾节点接收数据并计算事件的发生可能性,与后台ITS系统协同判定事件真伪并进行数据归档。本发明方法明确,效果显著,在准确检测事件的同时能大幅度减少数据收集过程中的传输成本。
-
公开(公告)号:CN114464691B
公开(公告)日:2024-09-24
申请号:CN202210119652.1
申请日:2022-02-08
Applicant: 厦门大学
IPC: H01L31/0312 , H01L31/0376 , H01L31/0392 , H01L31/18 , H01L31/20 , C23C14/16 , C23C14/18 , C23C14/58 , B82Y30/00 , B82Y40/00
Abstract: 一种GeSn纳米晶材料及其制备方法与应用,所述GeSn纳米晶材料为GeSn纳米晶嵌于非晶GeSn中,Sn组分的摩尔含量为7.5%~41.6%;所述GeSn纳米晶材料的制备方法,包括以下步骤:1)对衬底进行清洗;2)在清洗后的衬底上,用物理沉积的方法生长局部存在较高Sn组分的非晶GeSn薄膜,以在GeSn薄膜中引入Sn和Ge的浓度梯度;3)对步骤2)的样品进行退火得到非晶GeSn中的高Sn组分GeSn纳米晶。本发明与传统CMOS工艺相兼容,制备得到的GeSn纳米晶的Sn组分高于Sn在Ge中的平衡固溶度并且可通过退火温度调控。
-
公开(公告)号:CN112378777A
公开(公告)日:2021-02-19
申请号:CN202011248536.7
申请日:2020-11-10
Applicant: 厦门大学
Abstract: 本发明涉及一种高温低压环境下激光毁伤地面模拟测试系统及方法,该系统包括:高温激光毁伤反应腔、高功率中频感应加热器、多组分供气子系统、真空子系统、高功率光纤耦合激光控制子系统、材料响应测试子系统、水冷子系统和集成控制子系统,本发明采用高温激光毁伤反应腔、多组分供气子系统及真空子系统为被测样品提供低压环境,并可调节环境气氛,通过高功率中频感应加热器以感生电流的方式对高温激光毁伤反应腔内的被测样品加载高温,通过高功率光纤耦合激光控制子系统提供高能的激光照射被测样品,并利用材料响应测试子系统监测被测样品的表面、背面温度,拍摄被测样品表面毁伤程度,能够地面模拟高温低压环境下高能激光打击毁伤热防护材料。
-
公开(公告)号:CN114464691A
公开(公告)日:2022-05-10
申请号:CN202210119652.1
申请日:2022-02-08
Applicant: 厦门大学
IPC: H01L31/0312 , H01L31/0376 , H01L31/0392 , H01L31/18 , H01L31/20 , C23C14/16 , C23C14/18 , C23C14/58 , B82Y30/00 , B82Y40/00
Abstract: 一种GeSn纳米晶材料及其制备方法与应用,所述GeSn纳米晶材料为GeSn纳米晶嵌于非晶GeSn中,Sn组分的摩尔含量为7.5%~41.6%;所述GeSn纳米晶材料的制备方法,包括以下步骤:1)对衬底进行清洗;2)在清洗后的衬底上,用物理沉积的方法生长局部存在较高Sn组分的非晶GeSn薄膜,以在GeSn薄膜中引入Sn和Ge的浓度梯度;3)对步骤2)的样品进行退火得到非晶GeSn中的高Sn组分GeSn纳米晶。本发明与传统CMOS工艺相兼容,制备得到的GeSn纳米晶的Sn组分高于Sn在Ge中的平衡固溶度并且可通过退火温度调控。
-
公开(公告)号:CN112378776B
公开(公告)日:2021-09-03
申请号:CN202011246388.5
申请日:2020-11-10
Applicant: 厦门大学
Abstract: 本发明涉及一种热防护材料热‑力‑氧‑激光多场耦合地面测试系统及方法,该系统包括:复杂气氛反应腔、感应加热子系统、力学加载子系统、多组分供气子系统、真空抽气子系统、大功率激光加载子系统、材料响应测试子系统、水冷子系统和集成控制子系统,本发明采用复杂气氛反应腔、多组分供气子系统及真空抽气子系统为被测样品提供可调节的环境气氛,通过感应加热子系统对被测样品加载高温,通过力学加载子系统对被测样本加载单轴拉应力,通过大功率激光加载子系统提供高能的激光照射被测样品,并利用材料响应测试子系统监测被测样品的表面、背面温度,被测样品表面形貌变化和应力数据,能够实现热防护材料热‑力‑氧‑激光多场耦合的地面模拟测试。
-
-
-
-
-
-
-
-
-